Use of nuclear magnetic resonance-based metabolomics in detecting drug resistance in cancer

被引:29
作者
Merz, Andrea L. [2 ]
Serkova, Natalie J. [1 ,2 ]
机构
[1] Univ Colorado, Dept Anesthesiol, Anschutz Med Ctr, Canc Ctr MRI PET CT Core, Aurora, CO 80045 USA
[2] Univ Colorado, Canc Ctr Metab NMR Core, Boulder, CO 80309 USA
关键词
anticancer treatment; cancer biomarkers; choline metabolism; quantitative metabolomics; signal transduction inhibitor; Warburg effect; POSITRON-EMISSION-TOMOGRAPHY; CELL LUNG-CANCER; BREAST-CANCER; GROWTH-FACTOR; GLUCOSE-METABOLISM; MASS-SPECTROMETRY; IN-VIVO; CHOLINE METABOLISM; TUMOR METABOLISM; MR SPECTROSCOPY;
D O I
10.2217/BMM.09.15
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Cancer cells possess a highly unique metabolic phenotype, which is characterized by high glucose uptake, increased glycolytic activity, decreased mitochondrial activity, low bioenergetic and increased phospholipid turnover. These metabolic hallmarks can be readily assessed by metabolic technologies - either in vitro or in vivo - to monitor responsiveness and resistance to novel targeted drugs, where specific inhibition of cell proliferation (cytostatic effect) occurs rather than direct induction of cell death (cytotoxicity). Using modern analytical technologies in combination with statistical approaches, 'metabolomics', a global metabolic profile on patient samples can be established and validated for responders and nonresponders, providing additional metabolic end points. Discovered metabolic end points should be translated into noninvasive metabolic imaging protocols.
引用
收藏
页码:289 / 306
页数:18
相关论文
共 100 条
  • [1] Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models
    Al-Saffar, NMS
    Troy, H
    Ramírez de Molina, A
    Jackson, LE
    Madhu, B
    Griffiths, JR
    Leach, MO
    Workman, P
    Lacal, JC
    Judson, IR
    Chung, YL
    [J]. CANCER RESEARCH, 2006, 66 (01) : 427 - 434
  • [2] MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status
    Bathen, Tone F.
    Jensen, Line R.
    Sitter, Beathe
    Fjoesne, Hans E.
    Halgunset, Jostein
    Axelson, David E.
    Gribbestad, Ingrid S.
    Lundgren, Steinar
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2007, 104 (02) : 181 - 189
  • [3] Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells
    Beloueche-Babari, M
    Jackson, LE
    Al-Saffar, NMS
    Eccles, SA
    Raynaud, FI
    Workman, P
    Leach, MO
    Ronen, SM
    [J]. MOLECULAR CANCER THERAPEUTICS, 2006, 5 (01) : 187 - 196
  • [4] Magnetic resonance spectroscopy monitoring of mitogen-activated protein kinase signaling inhibition
    Beloueche-Babari, M
    Jackson, LE
    Al-Saffar, NMS
    Workman, P
    Leach, MO
    Ronen, SM
    [J]. CANCER RESEARCH, 2005, 65 (08) : 3356 - 3363
  • [5] Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy
    Blankenberg, FG
    Katsikis, PD
    Storrs, RW
    Beaulieu, C
    Spielman, D
    Chen, JY
    Naumovski, L
    Tait, JF
    [J]. BLOOD, 1997, 89 (10) : 3778 - 3786
  • [6] Bocci G, 2002, CANCER RES, V62, P6938
  • [7] Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck
    Bonner, JA
    Harari, PM
    Giralt, J
    Azarnia, N
    Shin, DM
    Cohen, RB
    Jones, CU
    Sur, R
    Raben, D
    Jassem, J
    Ove, R
    Kies, MS
    Baselga, J
    Youssoufian, H
    Amellal, N
    Rowinsky, EK
    Ang, KK
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (06) : 567 - 578
  • [8] BONORA E, CANC RES, V66, P6087
  • [9] Browder T, 2000, CANCER RES, V60, P1878
  • [10] BYYSTROM P, 2009, ANN ONCOL