Maximum Likelihood Estimation and Uncertainty Quantification for Gaussian Process Approximation of Deterministic Functions

被引:22
作者
Karvonen, Toni [1 ,2 ]
Wynne, George [3 ]
Tronarp, Filip [1 ,4 ]
Oates, Chris [2 ,5 ]
Sarkka, Simo [1 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Espoo, Finland
[2] Alan Turing Inst, London NW1 2DB, England
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
[4] Univ Tubingen, Tubingen, Germany
[5] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, NE, England
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2020年 / 8卷 / 03期
基金
芬兰科学院; 英国工程与自然科学研究理事会;
关键词
nonparametric regression; scattered data approximation; credible sets; Bayesian cubature; model misspecification; SCATTERED DATA INTERPOLATION; CROSS-VALIDATION; SAMPLE PATHS; INEQUALITY; PREDICTION; PARAMETERS; KERNELS; SPACES; RATES;
D O I
10.1137/20M1315968
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Despite the ubiquity of the Gaussian process regression model, few theoretical results are available that account for the fact that parameters of the covariance kernel typically need to be estimated from the data set. This article provides one of the first theoretical analyses in the context of Gaussian process regression with a noiseless data set. Specifically, we consider the scenario where the scale parameter of a Sobolev kernel (such as a Matern kernel) is estimated by maximum likelihood. We show that the maximum likelihood estimation of the scale parameter alone provides significant adaptation against misspecification of the Gaussian process model in the sense that the model can become "slowly" overconfident at worst, regardless of the difference between the smoothness of the data-generating function and that expected by the model. The analysis is based on a combination of techniques from nonparametric regression and scattered data interpolation. Empirical results are provided in support of the theoretical findings.
引用
收藏
页码:926 / 958
页数:33
相关论文
共 77 条
  • [11] Cross-validation estimation of covariance parameters under fixed-domain asymptotics
    Bachoc, Francois
    Lagnoux, Agnes
    Nguyen, Thi Mong Ngoc
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 160 : 42 - 67
  • [12] Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification
    Bachoc, Francois
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 66 : 55 - 69
  • [13] Fourier Kernel Learning
    Bazavan, Eduard Gabriel
    Li, Fuxin
    Sminchisescu, Cristian
    [J]. COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 : 459 - 473
  • [14] Berlinet A., 2004, Reproducing Kernel Hilbert Spaces in Probability and Statistics, DOI 10.1007/978-1-4419-9096-9
  • [15] Bogachev V.I., 1998, Gaussian Measures
  • [16] Briol FX, 2019, STAT SCI, V34, P1, DOI 10.1214/18-STS660
  • [17] Bull AD, 2011, J MACH LEARN RES, V12, P2879
  • [18] Bayesian Probabilistic Numerical Methods
    Cockayne, Jon
    Oates, Chris J.
    Sullivan, T. J.
    Girolami, Mark
    [J]. SIAM REVIEW, 2019, 61 (04) : 756 - 789
  • [19] Stability of kernel-based interpolation
    De Marchi, Stefano
    Schaback, Robert
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 32 (02) : 155 - 161
  • [20] Mine gas emission prediction based on Gaussian process model
    Dong Dingwen
    [J]. 2012 INTERNATIONAL SYMPOSIUM ON SAFETY SCIENCE AND TECHNOLOGY, 2012, 45 : 334 - 338