Scaling phenomena in fatigue and fracture

被引:50
作者
Barenblatt, G. I. [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
关键词
fracture-advanced similarity analysis; fatigue-advanced similarity analysis; scaling laws in fatigue; scaling laws in fracture; incomplete similarity; pan's law; fracture-cracks; fatigue-cracks; dynamic cracks;
D O I
10.1007/s10704-006-0036-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The general classification of scaling laws will be presented and the basic concepts of modern similarity analysis - intermediate asymptotics, complete and incomplete similarity - will be introduced and discussed. The examples of scaling laws corresponding to complete similarity will be given. The Paris scaling law in fatigue will be discussed as an instructive example of incomplete similarity. It will be emphasized that in the Paris law the powers are not the material constants. Therefore, the evaluation of the life-time of structures using the data obtained from standard fatigue tests requires some precautions.
引用
收藏
页码:19 / 35
页数:17
相关论文
共 41 条
[1]  
[Anonymous], PRIKL MAT MEKH
[2]  
[Anonymous], 1987, Dimensional analysis
[3]  
Baant Z. P., 2002, SCALING STRUCTURAL S
[4]  
Baant ZP., 1998, Fracture and size effect in concrete and other quasibrittle materials, V1st ed.
[5]  
Barenblatt G. I., 1971, RUSS MATH SURV, V26, P45, DOI DOI 10.1070/RM1971V026N02ABEH003819
[6]  
Barenblatt G. I., 2003, Scaling
[7]   SELF-SIMILAR SOLUTIONS AS INTERMEDIATE ASYMPTOTICS [J].
BARENBLATT, GI ;
ZELDOVICH, YB .
ANNUAL REVIEW OF FLUID MECHANICS, 1972, 4 :285-+
[8]   INCOMPLETE SELF-SIMILARITY OF FATIGUE IN THE LINEAR RANGE OF CRACK-GROWTH [J].
BARENBLATT, GI ;
BOTVINA, LR .
FATIGUE OF ENGINEERING MATERIALS AND STRUCTURES, 1980, 3 (03) :193-202
[9]  
BARENBLATT GI, 1959, PMM-J APPL MATH MEC, P706
[10]  
BARENBLATT GI, 1959, PMM-J APPL MATH MEC, P893