共 67 条
Stability of graph theoretical measures in structural brain networks in Alzheimer's disease
被引:37
作者:
Martensson, Gustav
[1
]
Pereira, Joana B.
[1
]
Mecocci, Patrizia
[2
]
Vellas, Bruno
[3
]
Tsolaki, Magda
[4
]
Kloszewska, Iwona
[5
]
Soininen, Hilkka
[6
,7
]
Lovestone, Simon
[8
]
Simmons, Andrew
[9
,10
,11
]
Volpe, Giovanni
[12
]
Westman, Eric
[1
,11
]
机构:
[1] Karolinska Inst, Div Clin Geriatr, Dept Neurobiol Care Sci & Soc, Stockholm, Sweden
[2] Univ Perugia, Inst Gerontol & Geriatr, Perugia, Italy
[3] Univ Toulouse, INSERM, U558, Toulouse, France
[4] Aristotle Univ Thessaloniki, Dept Neurol 3, Memory & Dementia Unit, Thessaloniki, Greece
[5] Med Univ Lodz, Lodz, Poland
[6] Univ Eastern Finland, Inst Clin Med, Neurol, Kuopio, Finland
[7] Kuopio Univ Hosp, Neuroctr, Neurol, Kuopio, Finland
[8] Univ Oxford, Warneford Hosp, Dept Psychiat, Oxford, England
[9] NIHR Biomed Res Ctr Mental Hlth, London, England
[10] NIHR Biomed Res Unit Dementia, London, England
[11] Kings Coll London, Ctr Neuroimaging Sci, Inst Psychiat Psychol & Neurosci, Dept Neuroimaging, London, England
[12] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
来源:
基金:
加拿大健康研究院;
瑞典研究理事会;
美国国家卫生研究院;
关键词:
HUMAN CEREBRAL-CORTEX;
CORTICAL THICKNESS;
CONNECTIVITY;
ORGANIZATION;
CLASSIFICATION;
SEGMENTATION;
DEMENTIA;
PATTERNS;
ACCURATE;
ATROPHY;
D O I:
10.1038/s41598-018-29927-0
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Graph analysis has become a popular approach to study structural brain networks in neurodegenerative disorders such as Alzheimer's disease (AD). However, reported results across similar studies are often not consistent. In this paper we investigated the stability of the graph analysis measures clustering, path length, global efficiency and transitivity in a cohort of AD (N = 293) and control subjects (N = 293). More specifically, we studied the effect that group size and composition, choice of neuroanatomical atlas, and choice of cortical measure (thickness or volume) have on binary and weighted network properties and relate them to the magnitude of the differences between groups of AD and control subjects. Our results showed that specific group composition heavily influenced the network properties, particularly for groups with less than 150 subjects. Weighted measures generally required fewer subjects to stabilize and all assessed measures showed robust significant differences, consistent across atlases and cortical measures. However, all these measures were driven by the average correlation strength, which implies a limitation of capturing more complex features in weighted networks. In binary graphs, significant differences were only found in the global efficiency and transitivity measures when using cortical thickness measures to define edges. The findings were consistent across the two atlases, but no differences were found when using cortical volumes. Our findings merits future investigations of weighted brain networks and suggest that cortical thickness measures should be preferred in future AD studies if using binary networks. Further, studying cortical networks in small cohorts should be complemented by analyzing smaller, subsampled groups to reduce the risk that findings are spurious.
引用
收藏
页数:15
相关论文