Rolling quantum dice with a superconducting qubit

被引:31
作者
Barends, R. [1 ]
Kelly, J. [1 ]
Veitia, A. [2 ]
Megrant, A. [1 ]
Fowler, A. G. [1 ,3 ]
Campbell, B. [1 ]
Chen, Y. [1 ]
Chen, Z. [1 ]
Chiaro, B. [1 ]
Dunsworth, A. [1 ]
Hoi, I. -C. [1 ]
Jeffrey, E. [1 ]
Neill, C. [1 ]
O'Malley, P. J. J. [1 ]
Mutus, J. [1 ]
Quintana, C. [1 ]
Roushan, P. [1 ]
Sank, D. [1 ]
Wenner, J. [1 ]
White, T. C. [1 ]
Korotkov, A. N. [2 ]
Cleland, A. N. [1 ]
Martinis, John M. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[3] Univ Melbourne, Sch Phys, Ctr Quantum Computat & Commun Technol, Melbourne, Vic 3010, Australia
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 03期
关键词
Atomic physics;
D O I
10.1103/PhysRevA.90.030303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
One of the key challenges in quantum information is coherently manipulating the quantum state. However, it is an outstanding question whether control can be realized with low error. Only gates from the Clifford group-containing pi, pi/2, and Hadamard gates-have been characterized with high accuracy. Here, we show how the Platonic solids enable implementing and characterizing larger gate sets. We find that all gates can be implemented with low error. The results fundamentally imply arbitrary manipulation of the quantum state can be realized with high precision, providing practical possibilities for designing efficient quantum algorithms.
引用
收藏
页数:4
相关论文
共 25 条
[1]  
[Anonymous], ARXIV14032975
[2]  
[Anonymous], ARXIV14031539
[3]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[4]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[5]   Optimized driving of superconducting artificial atoms for improved single-qubit gates [J].
Chow, J. M. ;
DiCarlo, L. ;
Gambetta, J. M. ;
Motzoi, F. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2010, 82 (04)
[6]   Process verification of two-qubit quantum gates by randomized benchmarking [J].
Corcoles, A. D. ;
Gambetta, Jay M. ;
Chow, Jerry M. ;
Smolin, John A. ;
Ware, Matthew ;
Strand, Joel ;
Plourde, B. L. T. ;
Steffen, M. .
PHYSICAL REVIEW A, 2013, 87 (03)
[7]   Exact and approximate unitary 2-designs and their application to fidelity estimation [J].
Dankert, Christoph ;
Cleve, Richard ;
Emerson, Joseph ;
Livine, Etera .
PHYSICAL REVIEW A, 2009, 80 (01)
[8]   Scalable noise estimation with random unitary operators [J].
Emerson, J ;
Alicki, R ;
Zyczkowski, K .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (10) :S347-S352
[9]   Investigating the limits of randomized benchmarking protocols [J].
Epstein, Jeffrey M. ;
Cross, Andrew W. ;
Magesan, Easwar ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2014, 89 (06)
[10]   Evenly distributed unitaries: On the structure of unitary designs [J].
Gross, D. ;
Audenaert, K. ;
Eisert, J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)