Percolation of the excursion sets of planar symmetric shot noise fields

被引:4
作者
Lachieze-Rey, Raphael [1 ,2 ]
Muirhead, Stephen [3 ,4 ]
机构
[1] Univ Paris 05, Paris, France
[2] Univ Paris, Paris, France
[3] Queen Mary Univ London, Sch Math Sci, London, England
[4] Univ Melbourne, Sch Math & Stat, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Percolation; Excursion sets; Shot noise fields; Phase transition; PHASE-TRANSITION; SENSITIVITY; UNIQUENESS; PERIMETER; GEOMETRY;
D O I
10.1016/j.spa.2022.01.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of phase transitions in the global connectivity of the excursion sets of planar symmetric shot noise fields. Our main result establishes a phase transition with respect to the level for shot noise fields with symmetric log-concave mark distributions, including Gaussian, uniform, and Laplace marks, and kernels that are positive, symmetric, and have sufficient tail decay. Without the log-concavity assumption we prove a phase transition with respect to the intensity of positive marks. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:175 / 209
页数:35
相关论文
共 31 条
[21]  
Kohler-Schindler L., 2020, ARXIV PREPRINT ARXIV
[22]   NORMAL CONVERGENCE OF NONLOCALISED GEOMETRIC FUNCTIONALS AND SHOT-NOISE EXCURSIONS [J].
Lachieze-Rey, Raphael .
ANNALS OF APPLIED PROBABILITY, 2019, 29 (05) :2613-2653
[23]  
Meester R, 1996, CONTINUUM PERCOLATIO
[24]   PERCOLATION IN RANDOM-FIELDS .2. [J].
MOLCHANOV, SA ;
STEPANOV, AK .
THEORETICAL AND MATHEMATICAL PHYSICS, 1983, 55 (03) :592-599
[25]   The sharp phase transition for level set percolation of smooth planar Gaussian fields [J].
Muirhead, Stephen ;
Vanneuville, Hugo .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02) :1358-1390
[26]   Every decision tree has an influential variable [J].
O'Donnell, R ;
Saks, M ;
Schramm, O ;
Servedio, RA .
46TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2005, :31-39
[27]   Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities [J].
Reynaud-Bouret, P .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (01) :103-153
[28]  
Rivera A., 2020, Ann. Henri Leb, V3, P169, DOI DOI 10.5802/AHL.29
[29]   Quasi-independence for nodal lines [J].
Rivera, Alejandro ;
Vanneuville, Hugo .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (03) :1679-1711
[30]   Quantitative noise sensitivity and exceptional times for percolation [J].
Schramm, Oded ;
Steif, Jeffrey E. .
ANNALS OF MATHEMATICS, 2010, 171 (02) :619-672