Percolation of the excursion sets of planar symmetric shot noise fields

被引:4
作者
Lachieze-Rey, Raphael [1 ,2 ]
Muirhead, Stephen [3 ,4 ]
机构
[1] Univ Paris 05, Paris, France
[2] Univ Paris, Paris, France
[3] Queen Mary Univ London, Sch Math Sci, London, England
[4] Univ Melbourne, Sch Math & Stat, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Percolation; Excursion sets; Shot noise fields; Phase transition; PHASE-TRANSITION; SENSITIVITY; UNIQUENESS; PERIMETER; GEOMETRY;
D O I
10.1016/j.spa.2022.01.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of phase transitions in the global connectivity of the excursion sets of planar symmetric shot noise fields. Our main result establishes a phase transition with respect to the level for shot noise fields with symmetric log-concave mark distributions, including Gaussian, uniform, and Laplace marks, and kernels that are positive, symmetric, and have sufficient tail decay. Without the log-concavity assumption we prove a phase transition with respect to the intensity of positive marks. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:175 / 209
页数:35
相关论文
共 31 条
[1]   Noise sensitivity and Voronoi percolation [J].
Ahlberg, Daniel ;
Baldasso, Rangel .
ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
[2]   Sharpness of the phase transition for continuum percolation in R2 [J].
Ahlberg, Daniel ;
Tassion, Vincent ;
Teixeira, Augusto .
PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (1-2) :525-581
[3]  
Alexander KS, 1996, ANN PROBAB, V24, P1653
[4]  
[Anonymous], 2006, PERCOLATION
[5]   On Scaling Limits of Power Law Shot-Noise Fields [J].
Baccelli, Francois ;
Biswas, Anup .
STOCHASTIC MODELS, 2015, 31 (02) :187-207
[6]   Stochastic Geometry and Wireless Networks: Volume II Applications [J].
Baccelli, Francois ;
Blaszczyszyn, Bartlomiej .
FOUNDATIONS AND TRENDS IN NETWORKING, 2009, 4 (1-2) :1-302
[7]   Stochastic Geometry and Wireless Networks: Volume I Theory [J].
Baccelli, Francois ;
Blaszczyszyn, Bartlomiej .
FOUNDATIONS AND TRENDS IN NETWORKING, 2008, 3 (3-4) :249-444
[8]   Percolation of random nodal lines [J].
Beffara, Vincent ;
Gayet, Damien .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01) :131-176
[9]  
Benjamini I, 1999, PUBL MATH, P5
[10]   MEAN GEOMETRY FOR 2D RANDOM FIELDS: LEVEL PERIMETER AND LEVEL TOTAL CURVATURE INTEGRALS [J].
Bierme, Hermine ;
Desolneux, Agnes .
ANNALS OF APPLIED PROBABILITY, 2020, 30 (02) :561-607