Isogenies of elliptic curves and the Morava stabilizer group

被引:8
作者
Behrens, Mark [1 ]
Lawson, Tyler [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Morava stabilizer group; supersingular elliptic curves; quaternion algebras;
D O I
10.1016/j.jpaa.2005.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S-2 be the p-primary second Morava stabilizer group, C a supersingular elliptic curve over F-p, O the ring of endomorphisms of C, and l a topological generator of Z(p)(x) (or Z(2)(x)/{+/- 1} if p = 2). We show that for p > 2 the group Gamma subset of O[1/l](x) of quasi-endomorphisms of degree a power of e is dense in S-2. For p = 2, we show that Gamma is dense in an index 2 subgroup of S2. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 15 条
[1]   A modular description of the K(2)-local sphere at the prime 3 [J].
Behrens, M .
TOPOLOGY, 2006, 45 (02) :343-402
[2]  
Deuring M., 1941, ABH MATH SEM HAMBURG, V14, P197
[3]   Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups [J].
Devinatz, ES ;
Hopkins, MJ .
TOPOLOGY, 2004, 43 (01) :1-47
[4]   A resolution of the K(2)-local sphere at the prime 3 [J].
Goerss, P ;
Henn, HW ;
Mahowald, M ;
Rezk, C .
ANNALS OF MATHEMATICS, 2005, 162 (02) :777-822
[5]  
Goerss P.G., 2004, Structured Ring Spectra, P151, DOI [10.1017/CBO9780511529955.009, DOI 10.1017/CBO9780511529955.009]
[6]   Infinite subgroups of the Morava stabilizer groups [J].
Gorbounov, V ;
Mahowald, M ;
Symonds, P .
TOPOLOGY, 1998, 37 (06) :1371-1380
[7]  
KOHEL DR, 2001, ADV STUD PURE MATH, V30, P177
[8]   NOETHERIAN LOCALIZATIONS OF CATEGORIES OF COBORDISM COMODULES [J].
MORAVA, J .
ANNALS OF MATHEMATICS, 1985, 121 (01) :1-39
[9]   AN ALGORITHM FOR COMPUTING MODULAR-FORMS ON GAMMA-O(N) [J].
PIZER, A .
JOURNAL OF ALGEBRA, 1980, 64 (02) :340-390
[10]   STRUCTURE OF MORAVA STABILIZER ALGEBRAS [J].
RAVENEL, DC .
INVENTIONES MATHEMATICAE, 1976, 37 (02) :109-120