LOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD FOR INJECTIVE-OVERDETERMINED SYSTEMS

被引:0
作者
Amat, Sergio [1 ]
Argyros, Ioannis Konstantinos [2 ]
Alberto Magrenan, Angel [3 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estat, Murcia 30203, Spain
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] Univ Int La Rioja, Dept TFG TFM, Logrono 26002, La Rioja, Spain
关键词
the Gauss-Newton method; Hilbert spaces; majorant condition; local convergence; radius of convergence; injective-overdetermined systems; SEMILOCAL CONVERGENCE; MAJORANT CONDITION; BANACH-SPACE; PRINCIPLE; EQUATIONS;
D O I
10.4134/JKMS.2014.51.5.955
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present, under a weak majorant condition, a local convergence analysis for the Gauss-Newton method for injective-overdetermined systems of equations in a Hilbert space setting. Our results provide under the same information a larger radius of convergence and tighter error estimates on the distances involved than in earlier studies such us [10, 11, 13, 14, 18]. Special cases and numerical examples are also included in this study.
引用
收藏
页码:955 / 970
页数:16
相关论文
共 22 条
[1]   Geometric constructions of iterative functions to solve nonlinear equations [J].
Amat, S ;
Busquier, S ;
Gutiérrez, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) :197-205
[2]   New results on Newton-Kantorovich approximations with applications to nonlinear integral equations [J].
Appell, J ;
DePascale, E ;
Lysenko, JV ;
Zabrejko, PP .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (1-2) :1-17
[3]  
Argyros I. K., 2007, STUD COMPUT MATH, V15
[4]  
Argyros I.K., 2013, Computational methods in nonlinear analysis, efficient algorithms, fixed point theory and applications
[6]   Improved local convergence of Newton's method under weak majorant condition [J].
Argyros, Ioannis K. ;
Hilout, Said .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (07) :1892-1902
[7]  
Argyros IK, 2011, MATH COMPUT, V80, P327
[8]   Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions [J].
Argyros, Ioannis K. ;
Hilout, Said .
NUMERICAL ALGORITHMS, 2011, 58 (01) :23-52
[10]   Local convergence analysis of the Gauss-Newton method under a majorant condition [J].
Ferreira, O. P. ;
Goncalves, M. L. N. ;
Oliveira, P. R. .
JOURNAL OF COMPLEXITY, 2011, 27 (01) :111-125