Linear representation of discrete surfaces in 3D

被引:0
|
作者
Arcelli, Carlo [1 ]
di Baja, Gabriella Sanniti [1 ]
Serino, Luca [1 ]
机构
[1] CNR, Ist Cibernet E Caianiello, I-80078 Naples, Italy
来源
19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6 | 2008年
关键词
SIMPLE POINTS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method to compute a linear medial representation of a complex surface in the 3D discrete space is presented. The method involves voxel classification, surface labeling, anchor point detection, and voxel removal.
引用
收藏
页码:2036 / 2039
页数:4
相关论文
共 50 条
  • [1] Analytical representation of 3D magnetic surfaces
    Chiariello, Andrea Gaetano
    Formisano, Alessandro
    Ledda, Francesco
    Martone, Raffaele
    Pizzo, Francesco
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2017, 54 (04) : 627 - 645
  • [2] 3D NURBS representation of surfaces for illumination
    Davenport, TLR
    INTERNATIONAL OPTICAL DESIGN CONFERENCE 2002, 2002, 4832 : 293 - 301
  • [3] Reconstruction and Representation for 3D Implicit Surfaces
    Wang, Chung-Shing
    Chang, Teng-Rucy
    Lin, Man-Ching
    ADVANCES IN COMPUTER SCIENCE AND EDUCATION APPLICATIONS, PT II, 2011, 202 : 364 - +
  • [4] BOXTREE: A hierarchical representation for surfaces in 3D
    Barequet, G
    Chazelle, B
    Guibas, LJ
    Mitchell, JSB
    Tal, A
    COMPUTER GRAPHICS FORUM, 1996, 15 (03) : C387 - &
  • [5] Stable algebraic surfaces for 3D object representation
    Sahin, Turker
    Unel, Mustafa
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 32 (02) : 127 - 137
  • [6] Stable Algebraic Surfaces for 3D Object Representation
    Turker Sahin
    Mustafa Unel
    Journal of Mathematical Imaging and Vision, 2008, 32 : 127 - 137
  • [7] Critical bifurcation surfaces of 3D discrete dynamics
    Sonis, M
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 4 (04) : 333 - 343
  • [8] Normal computation for discrete surfaces in 3D space
    Thurmer, G
    Wuthrich, CA
    COMPUTER GRAPHICS FORUM, 1997, 16 (03) : C15 - C26
  • [9] Qualitativization of 3D Functions from a Discrete Numerical Representation
    Flores, Juan J.
    Rodriguez, Hector
    2009 EIGHTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, : 191 - 196
  • [10] Reversible polygonalization of a 3D planar discrete curve: Application on discrete surfaces
    Sivignon, I
    Dupont, F
    Chassery, JM
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2005, 3429 : 347 - 358