Secret-Key Provisioning With Collaborative Routing in Partially-Trusted-Relay-based Quantum-Key-Distribution-Secured Optical Networks

被引:30
作者
Yu, Xiaosong [1 ]
Liu, Yuhang [1 ]
Zou, Xingyu [1 ]
Cao, Yuan [2 ]
Zhao, Yongli [1 ]
Nag, Avishek [3 ]
Zhang, Jie [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
[3] Univ Coll Dublin, Sch Elect & Elect Engn, Dublin D04 V1W8 4, Ireland
关键词
Relays; Optical fiber networks; Routing; Authentication; Encryption; Quantum state; Protocols; Optical network; quantum key distribution; routing algorithm; CHALLENGES;
D O I
10.1109/JLT.2022.3153992
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum Key Distribution (QKD) is a promising technology that provides proven unconditional security based on fundamentals of quantum physics, especially for point-to-point communications. It could be applied in large-scale optical networks for long-distance key provisioning mainly by three relaying methods: quantum-repeater-based QKD, trusted-relay-based QKD, and measurement-device-independent QKD (MDI-QKD). However, quantum-repeater-based QKD is still under study because of the immature technologies such as the preliminary quantum memory. The trusted-relay-based QKD is vulnerable since insecurity of non-ideal single-photon sources and detectors cannot be ignored in practical applications. On the other hand, for MDI-QKD, there exists a limitation on its key rate under long-distance communications. According to these limitations, embedding protocols like MDI-QKD into the existing trusted-relay-based QKD secured optical networks (QKD-ON) with usage of untrusted relays is a promising key-provisioning scheme. In this paper, we study such partially-trusted relay scenarios and focus on its routing of keys in different kinds of typical network topologies. A partially-trusted-relay-based QKD method is described, which can allow a pair of optical nodes sharing secret keys under the coexistence of trusted relays and untrusted relays. The secret-key provisioning with collaborative routing (SKP-CR) algorithm is proposed to search for the optimal key-relay routing path. We perform the simulations with different proportion of trusted relays versus untrusted relays, initial secret keys in the quantum key pools (QKPs), and traffic load. The simulations verify that the SKP-CR algorithm can significantly outperform the conventional trusted-relay-based scheme in terms of key-distribution success rate with an improvement of up to 62% with a mesh topology.
引用
收藏
页码:3530 / 3545
页数:16
相关论文
共 70 条
[1]   Secure NFV Orchestration Over an SDN-Controlled Optical Network With Time-Shared Quantum Key Distribution Resources [J].
Aguado, Alejandro ;
Hugues-Salas, Emilio ;
Haigh, Paul Anthony ;
Marhuenda, Jaume ;
Price, Alasdair B. ;
Sibson, Philip ;
Kennard, Jake E. ;
Erven, Chris ;
Rarity, John G. ;
Thompson, Mark Gerard ;
Lord, Andrew ;
Nejabati, Reza ;
Simeonidou, Dimitra .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (08) :1357-1362
[2]   Using quantum key distribution for cryptographic purposes: A survey [J].
Alleaume, R. ;
Branciard, C. ;
Bouda, J. ;
Debuisschert, T. ;
Dianati, M. ;
Gisin, N. ;
Godfrey, M. ;
Grangier, P. ;
Laenger, T. ;
Luetkenhaus, N. ;
Monyk, C. ;
Painchault, P. ;
Peev, M. ;
Poppe, A. ;
Pornin, T. ;
Rarity, J. ;
Renner, R. ;
Ribordy, G. ;
Riguidel, M. ;
Salvail, L. ;
Shields, A. ;
Weinfurter, H. ;
Zeilinger, A. .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :62-81
[3]   Topological optimization of quantum key distribution networks [J].
Alleaume, R. ;
Roueff, F. ;
Diamanti, E. ;
Luetkenhaus, N. .
NEW JOURNAL OF PHYSICS, 2009, 11
[4]  
[Anonymous], 2021, ITU-T Recommendation Y.3803
[5]  
Arabul E, 2021, 2021 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC)
[6]   All-photonic quantum repeaters [J].
Azuma, Koji ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2015, 6
[7]  
Bennett C. H., 1984, P INT C COMPUTERS SY, P175, DOI [10.1016/j.tcs.2014.05.025, DOI 10.1016/J.TCS.2014.05.025]
[8]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[9]   Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations [J].
Bourgoin, Jean-Philippe ;
Gigov, Nikolay ;
Higgins, Brendon L. ;
Yan, Zhizhong ;
Meyer-Scott, Evan ;
Khandani, Amir K. ;
Luetkenhaus, Norbert ;
Jennewein, Thomas .
PHYSICAL REVIEW A, 2015, 92 (05)
[10]   Chip-Based Measurement-Device-Independent Quantum Key Distribution Using Integrated Silicon Photonic Systems [J].
Cao, L. ;
Luo, W. ;
Wang, Y. X. ;
Zou, J. ;
Yan, R. D. ;
Cai, H. ;
Zhang, Y. ;
Hu, X. L. ;
Jiang, C. ;
Fan, W. J. ;
Zhou, X. Q. ;
Dong, B. ;
Luo, X. S. ;
Lo, G. Q. ;
Wang, Y. X. ;
Xu, Z. W. ;
Sun, S. H. ;
Wang, X. B. ;
Hao, Y. L. ;
Jin, Y. F. ;
Kwong, D. L. ;
Kwek, L. C. ;
Liu, A. Q. .
PHYSICAL REVIEW APPLIED, 2020, 14 (01)