A stochastic model of translation with-1 programmed ribosomal frameshifting

被引:3
|
作者
Bailey, Brenae L. [1 ]
Visscher, Koen [1 ,2 ,3 ,4 ]
Watkins, Joseph [1 ]
机构
[1] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[3] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA
[4] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
关键词
translation; elongation; stochastic models; ribosomal frameshift; AMINOACYL-TRANSFER-RNA; MESSENGER-RNA; ESCHERICHIA-COLI; PROTEIN TRANSLATION; MUTATIONAL ANALYSIS; PSEUDOKNOT; ELONGATION; SIGNAL; CODON; HIV-1;
D O I
10.1088/1478-3975/11/1/016009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many viruses produce multiple proteins from a single mRNA sequence by encoding overlapping genes. One mechanism to decode both genes, which reside in alternate reading frames, is -1 programmed ribosomal frameshifting. Although recognized for over 25 years, the molecular and physical mechanism of -1 frameshifting remains poorly understood. We have developed a mathematical model that treats mRNA translation and associated -1 frameshifting as a stochastic process in which the transition probabilities are based on the energetics of local molecular interactions. The model predicts both the location and efficiency of -1 frameshift events in HIV-1. Moreover, we compute -1 frameshift efficiencies upon mutations in the viral mRNA sequence and variations in relative tRNA abundances, predictions that are directly testable in experiment.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Programmed ribosomal frameshifting occurs at multiple sites and by multiple paths
    Tinoco, Ignacio, Jr.
    Yan, Shannon
    Kim, Hee-Kyung
    FASEB JOURNAL, 2014, 28 (01):
  • [42] Programmed ribosomal frameshifting in decoding the SARS-CoV genome
    Baranov, PV
    Henderson, CM
    Anderson, CB
    Gesteland, RF
    Atkins, JF
    Howard, MT
    VIROLOGY, 2005, 332 (02) : 498 - 510
  • [43] Translation efficiency affects the sequence-independent+1 ribosomal frameshifting by polyamines
    Oguro, Akihiro
    Shigeta, Tomoaki
    Machida, Kodai
    Suzuki, Tomoaki
    Iwamoto, Takeo
    Matsufuji, Senya
    Imataka, Hiroaki
    JOURNAL OF BIOCHEMISTRY, 2020, 168 (02): : 139 - 149
  • [44] Stimulation of-1 programmed ribosomal frameshifting by a metabolite-responsive RNA pseudoknot
    Chou, Ming-Yuan
    Lin, Szu-Chieh
    Chang, Kung-Yao
    RNA, 2010, 16 (06) : 1236 - 1244
  • [45] Abracadabra, One Becomes Two: The Importance of Context in Viral-1 Programmed Ribosomal Frameshifting
    Penn, Wesley D.
    Mukhopadhyay, Suchetana
    MBIO, 2022, 13 (04):
  • [46] Cell cycle control (and more) by programmed-1 ribosomal frameshifting: implications for disease and therapeutics
    Belew, Ashton T.
    Dinman, Jonathan D.
    CELL CYCLE, 2015, 14 (02) : 172 - 178
  • [47] Analysis of programmed frameshifting during translation of prfB in Flavobacterium johnsoniae
    Naeem, Fawwaz M.
    Gemler, Bryan T.
    Mcnutt, Zakkary A.
    Bundschuh, Ralf
    Fredrick, Kurt
    RNA, 2024, 30 (02) : 136 - 148
  • [48] High-throughput interrogation of programmed ribosomal frameshifting in human cells
    Martin Mikl
    Yitzhak Pilpel
    Eran Segal
    Nature Communications, 11
  • [49] Accounting for Programmed Ribosomal Frameshifting in the Computation of Codon Usage Bias Indices
    Garcia, Victor
    Zoller, Stefan
    Anisimova, Maria
    G3-GENES GENOMES GENETICS, 2018, 8 (10): : 3173 - 3183
  • [50] Thinking Outside the Frame: Impacting Genomes Capacity by Programmed Ribosomal Frameshifting
    Riegger, Ricarda J.
    Caliskan, Neva
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9