A stochastic model of translation with-1 programmed ribosomal frameshifting

被引:3
|
作者
Bailey, Brenae L. [1 ]
Visscher, Koen [1 ,2 ,3 ,4 ]
Watkins, Joseph [1 ]
机构
[1] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[3] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA
[4] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
关键词
translation; elongation; stochastic models; ribosomal frameshift; AMINOACYL-TRANSFER-RNA; MESSENGER-RNA; ESCHERICHIA-COLI; PROTEIN TRANSLATION; MUTATIONAL ANALYSIS; PSEUDOKNOT; ELONGATION; SIGNAL; CODON; HIV-1;
D O I
10.1088/1478-3975/11/1/016009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many viruses produce multiple proteins from a single mRNA sequence by encoding overlapping genes. One mechanism to decode both genes, which reside in alternate reading frames, is -1 programmed ribosomal frameshifting. Although recognized for over 25 years, the molecular and physical mechanism of -1 frameshifting remains poorly understood. We have developed a mathematical model that treats mRNA translation and associated -1 frameshifting as a stochastic process in which the transition probabilities are based on the energetics of local molecular interactions. The model predicts both the location and efficiency of -1 frameshift events in HIV-1. Moreover, we compute -1 frameshift efficiencies upon mutations in the viral mRNA sequence and variations in relative tRNA abundances, predictions that are directly testable in experiment.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Programmed-1 Ribosomal Frameshifting in coronaviruses: A therapeutic target
    Kelly, Jamie A.
    Woodside, Michael T.
    Dinman, Jonathan D.
    VIROLOGY, 2021, 554 : 75 - 82
  • [12] The role of programmed-1 ribosomal frameshifting in coronavirus propagation
    Plant, Ewan P.
    Dinman, Jonathan D.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2008, 13 : 4873 - 4881
  • [13] BIOT 59-A kinetic model for analysis of impact of the different steps of the translation elongation cycle on-1 programmed ribosomal frameshifting
    Liao, Pei-Yu
    Choi, Yong Seok
    Dinman, Jonathan D.
    Lee, Kelvin H.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [14] Factors affecting translation at the programmed-1 ribosomal frameshifting site of Cocksfoot mottle virus RNA in vivo
    Mäkeläinen, K
    Mäkinen, K
    NUCLEIC ACIDS RESEARCH, 2005, 33 (07) : 2239 - 2247
  • [15] Transactivation of programmed ribosomal frameshifting by a viral protein
    Li, Yanhua
    Treffers, Emmely E.
    Napthine, Sawsan
    Tas, Ali
    Zhu, Longchao
    Sun, Zhi
    Bell, Susanne
    Mark, Brian L.
    van Veelen, Peter A.
    van Hemert, Martijn J.
    Firth, Andrew E.
    Brierley, Ian
    Snijder, Eric J.
    Fang, Ying
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (21) : E2172 - E2181
  • [16] Programmed Ribosomal Frameshifting Mediates Expression of the α-Carboxysome
    Chaijarasphong, Thawatchai
    Nichols, Robert J.
    Kortright, Kaitlyn E.
    Nixon, Charlotte F.
    Teng, Poh K.
    Oltrogge, Luke M.
    Savage, David F.
    JOURNAL OF MOLECULAR BIOLOGY, 2016, 428 (01) : 153 - 164
  • [17] Kinetics of ribosomal pausing during programmed-1 translational frameshifting
    Lopinski, JD
    Dinman, JD
    Bruenn, JA
    MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (04) : 1095 - 1103
  • [18] Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV
    Brierley, Ian
    Dos Ramos, Francisco J.
    VIRUS RESEARCH, 2006, 119 (01) : 29 - 42
  • [19] High frequency of+1 programmed ribosomal frameshifting in Euplotes octocarinatus
    Wang, Ruanlin
    Xiong, Jie
    Wang, Wei
    Miao, Wei
    Liang, Aihua
    SCIENTIFIC REPORTS, 2016, 6
  • [20] Translational misreading: Mutations in translation elongation factor 1 alpha differentially affect programmed ribosomal frameshifting and drug sensitivity
    Dinman, JD
    Kinzy, TG
    RNA, 1997, 3 (08) : 870 - 881