Reducing Basis Mismatch in Harmonic Signal Recovery via Alternating Convex Search

被引:20
作者
Nichols, Jonathan M. [1 ]
Oh, Albert K. [2 ]
Willett, Rebecca M. [2 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
[2] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
关键词
Alternating convex search; basis mismatch; biconvex optimization; compressive sampling; sparsity; SPARSE; RECONSTRUCTION; NYQUIST;
D O I
10.1109/LSP.2014.2322444
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The theory behind compressive sampling pre-supposes that a given sequence of observations may be exactly represented by a linear combination of a small number of basis vectors. In practice, however, even small deviations from an exact signal model can result in dramatic increases in estimation error; this is the so-called "basis mismatch" problem. This work provides one possible solution to this problem in the form of an iterative, biconvex search algorithm. The approach uses standard l(1)-minimization to find the signal model coefficients followed by a maximum likelihood estimate of the signal model. The algorithm is illustrated on harmonic signals of varying sparsity and outperforms the current state-of-the-art.
引用
收藏
页码:1007 / 1011
页数:5
相关论文
共 25 条
[1]  
Boufounos Petros, 2012, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Proceedings 15th International Workshop, APPROX 2012 and 16th International Workshop, RANDOM 2012, P61, DOI 10.1007/978-3-642-32512-0_6
[2]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81
[3]  
Candes E. J., 2012, ARXIV12035871V3
[4]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[5]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[6]  
Chen SSB, 2001, SIAM REV, V43, P129, DOI [10.1137/S003614450037906X, 10.1137/S1064827596304010]
[7]   Sensitivity to Basis Mismatch in Compressed Sensing [J].
Chi, Yuejie ;
Scharf, Louis L. ;
Pezeshki, Ali ;
Calderbank, A. Robert .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (05) :2182-2195
[8]   Precise Undersampling Theorems [J].
Donoho, David L. ;
Tanner, Jared .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :913-924
[9]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[10]   Recovery of Sparse Translation-Invariant Signals With Continuous Basis Pursuit [J].
Ekanadham, Chaitanya ;
Tranchina, Daniel ;
Simoncelli, Eero P. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (10) :4735-4744