Atomic-Level Understanding of "Asymmetric Twins" in Boron Carbide

被引:58
|
作者
Xie, Kelvin Y. [1 ]
An, Qi [2 ]
Toksoy, M. Fatih [3 ]
McCauley, James W. [1 ,4 ]
Haber, Richard A. [3 ]
Goddard, William A., III [2 ]
Hemker, Kevin J. [1 ]
机构
[1] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
[2] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
[3] Rutgers State Univ, Ceram & Composite Mat Ctr, Piscataway, NJ 08854 USA
[4] US Army Res Lab, Aberdeen Proving Ground, MD 21005 USA
基金
美国国家科学基金会;
关键词
STRENGTH; NITRIDE; COPPER;
D O I
10.1103/PhysRevLett.115.175501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent observations of planar defects in boron carbide have been shown to deviate from perfect mirror symmetry and are referred to as "asymmetric twins." Here, we demonstrate that these asymmetric twins are really phase boundaries that form in stoichiometric B4C (i.e., B12C3) but not in B13C2. TEM observations and ab initio simulations have been coupled to show that these planar defects result from an interplay of stoichiometry, atomic positioning, icosahedral twinning, and structural hierarchy. The composition of icosahedra in B4C is B11C and translation of the carbon atom from a polar to equatorial site leads to a shift in bonding and a slight distortion of the lattice. No such distortion is observed in boron-rich B13C2 because the icosahedra do not contain carbon. Implications for tailoring boron carbide with stoichiometry and extrapolations to other hierarchical crystalline materials are discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Asymmetric twins in boron rich boron carbide
    Yang, Xiaokun
    Goddard, William A., III
    An, Qi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (19) : 13340 - 13347
  • [2] Asymmetric twins in rhombohedral boron carbide
    Fujita, Takeshi
    Guan, Pengfei
    Reddy, K. Madhav
    Hirata, Akihiko
    Guo, Junjie
    Chen, Mingwei
    APPLIED PHYSICS LETTERS, 2014, 104 (02)
  • [3] ATOMIC-LEVEL CHARACTERIZATION OF CUBIC SILICON-CARBIDE SURFACES - A REVIEW
    TSONG, IST
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1993, 76 (02) : 269 - 272
  • [4] Atomic-Level Computing
    Goth, Gregory
    COMMUNICATIONS OF THE ACM, 2012, 55 (09) : 11 - 13
  • [5] Atomic-level study of ion-induced nanoscale disordered domains in silicon carbide
    Gao, F
    Weber, WJ
    APPLIED PHYSICS LETTERS, 2003, 82 (06) : 913 - 915
  • [6] Atomic-Level Simulation Study of n-Hexane Pyrolysis on Silicon Carbide Surfaces
    Sajib, Md Symon Jahan
    Sarnieegohar, Mohammadreza
    Wei, Tao
    Shing, Katherine
    LANGMUIR, 2017, 33 (42) : 11102 - 11108
  • [7] Atomic-level understanding of a formamidinium hybrid halide perovskite, FAPbBr3
    Li, Chengmin
    Juarez-Perez, Emilio J.
    Mayoral, Alvaro
    CHEMICAL COMMUNICATIONS, 2022, 58 (87) : 12164 - 12167
  • [8] Atomic-level understanding of interface interactions in a halloysite nanotubes-PLA nanocomposite
    Kruglikov, Alexander
    Vasilchenko, Andrey
    Kasprzhitskii, Anton
    Lazorenko, Georgy
    RSC ADVANCES, 2019, 9 (67) : 39505 - 39514
  • [9] ATOMIC-LEVEL MECHANISMS OF MAGNESIUM OXIDATION
    Gardonio, Sandra
    Fanetti, Mattia
    Valant, Matjaz
    Orlov, Dmytro
    MAGNESIUM TECHNOLOGY 2016, 2016, : 73 - 76
  • [10] ATOMIC-LEVEL STRESS IN AN INHOMOGENEOUS SYSTEM
    CHEUNG, KS
    YIP, S
    JOURNAL OF APPLIED PHYSICS, 1991, 70 (10) : 5688 - 5690