A fixed point theorem in probabilistic metric spaces with a convex structure

被引:0
作者
Zikic-Dosenovic, Tatjana [1 ]
机构
[1] Univ Novi Sad, Fac Technol, Novi Sad 21000, Serbia
来源
NEW DIMENSIONS IN FUZZY LOGIC AND RELATED TECHNOLOGIES, VOL I, PROCEEDINGS | 2007年
关键词
multivalued mappings; coincidence point; probabilistic metric space; Menger space; triangular norm; Menger space with a convex structure;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The inequality F(f x,f y)(qs) >= F(x,y)(s) (s >= 0), where q is an element of (0, 1), is generalized for multi-valued mappings in many directions. Using Hausdorff distance S.B. Nadler in [7] introduced a generalization of Banach contraction principle in metric spaces. In [3] the definition of probabilistic Nadler q-contraction is given. Using some results given in [12] a fixed point theorem on spaces with a convex structure is obtained. Some fixed point, theorems in such spaces are proved in [1, 2].
引用
收藏
页码:241 / 246
页数:6
相关论文
共 12 条
[1]  
Chang S. S., 1994, PROBABILISTIC METRIC
[2]  
Hadic O., 1979, Publ. Inst. Math, V20, P107
[3]  
Hadzic O., 1995, FIXED POINT THEORY P
[4]  
Hadzic O., 1979, MAT VESNIK, V3, P125
[5]  
Klement E. P., 2000, TRENDS LOGIC, V8
[6]   MULTI-VALUED CONTRACTION MAPPINGS [J].
NADLER, SB .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 30 (02) :475-&
[7]  
Pap E, 2001, FIXED POINT THEORY P
[8]  
RADU V, 1983, CONTRACTION PRINCIPL
[9]  
Schweizer B., 2011, Probabilistic Metric Spaces
[10]  
Sehgal V.M., 1972, MATH SYSTEM THEORY, V6, P97, DOI [10.1007/BF01706080, DOI 10.1007/BF01706080]