Generalization of the Proca Action

被引:342
作者
Heisenberg, Lavinia [1 ,2 ,3 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
[3] Univ Geneva, Ctr Astroparticle Phys, CH-1211 Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
modified gravity; dark energy theory; FIELD EQUATIONS;
D O I
10.1088/1475-7516/2014/05/015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the Lagrangian of a vector field with derivative self-interactions with a priori arbitrary coefficients. Starting with a flat space-time we show that for a special choice of the coefficients of the self-interactions the ghost-like pathologies disappear. This constitutes the Galileon-type generalization of the Proca action with only three propagating physical degrees of freedom. The longitudinal mode of the vector field is associated to the usual Galileon interactions for a specific choice of the overall functions. In difference to a scalar Galileon theory, the generalized Proca field has more free parameters. We then extend this analysis to a curved background. The resulting theory is the Horndeski Proca action with second order equations of motion on curved space-times.
引用
收藏
页数:12
相关论文
共 11 条
[1]  
de Rham C., ARXIV13116485
[2]   Cosmology of the Galileon from massive gravity [J].
de Rham, Claudia ;
Heisenberg, Lavinia .
PHYSICAL REVIEW D, 2011, 84 (04)
[3]   Resummation of Massive Gravity [J].
de Rham, Claudia ;
Gabadadze, Gregory ;
Tolley, Andrew J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (23)
[4]   Generalization of the Fierz-Pauli action [J].
de Rham, Claudia ;
Gabadadze, Gregory .
PHYSICAL REVIEW D, 2010, 82 (04)
[5]   DBI and the Galileon reunited [J].
de Rham, Claudia ;
Tolley, Andrew J. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (05)
[6]   A no-go theorem for generalized vector Galileons on flat spacetime [J].
Deffayet, Cedric ;
Guemruekcueoglu, A. Emir ;
Mukohyama, Shinji ;
Wang, Yi .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04)
[7]   CONSERVATION OF CHARGE AND EINSTEIN-MAXWELL FIELD EQUATIONS [J].
HORNDESKI, GW .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (11) :1980-1987
[8]   2ND-ORDER SCALAR-TENSOR FIELD EQUATIONS IN A 4-DIMENSIONAL SPACE [J].
HORNDESKI, GW .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 10 (06) :363-384
[9]   Stability of Horndeski vector-tensor interactions [J].
Jimenez, Jose Beltran ;
Durrer, Ruth ;
Heisenberg, Lavinia ;
Thorsrud, Mikjel .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (10)
[10]   Galileon as a local modification of gravity [J].
Nicolis, Alberto ;
Rattazzi, Riccardo ;
Trincherini, Enrico .
PHYSICAL REVIEW D, 2009, 79 (06)