On Legendre Submanifolds in Lorentzian Sasakian Space Forms

被引:0
|
作者
Lee, Ji-Eun [1 ]
机构
[1] Chonnam Natl Univ, Inst Basic Sci, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
Legendre submanifold; Lorentzian Sasakian space form; C-parallel mean curvature vector field;
D O I
10.1007/s41980-020-00478-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine the sectional curvature K(X, Y) of a Legendre submanifold M-n in Lorentzian Sasakian space forms (M-1) over bar (2n+1)(k). Thus, we find the Ricci tensor rho and the scalar curvature tau of Legendre submanifold M-n. From these, we get the equivalent condition with M-n totally geodesic. Next, we prove that Legendre surfaces M-2 in Lorentzian Sasakian space forms (M-1) over bar (5)(k) with C-parallel mean curvature vector field are minimal or locally product of two curves. Moreover, we study Legendre surfaces whose mean curvature vector fields are eigenvectors of the Laplace operator (in normal bundle).
引用
收藏
页码:1893 / 1903
页数:11
相关论文
共 50 条