Bayesian optimization models for particle swarms

被引:0
作者
Monson, Christopher K. [1 ]
Seppi, Kevin D. [1 ]
机构
[1] Brigham Young Univ, Dept Comp Sci, Provo, UT 84602 USA
来源
GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2 | 2005年
关键词
swarm intelligence; mathematical models; optimization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore the use of information models as a guide for the development of single objective optimization algorithms, giving particular attention to the use of Bayesian models in a PSO context. The use of an explicit information model as the basis for particle motion provides tools for designing successful algorithms. One such algorithm is developed and shown empirically to be effective. Its relationship to other popular PSO algorithms is explored and arguments are presented that those algorithms may be developed from the same model, potentially providing new tools for their analysis and tuning.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 16 条
  • [1] The particle swarm - Explosion, stability, and convergence in a multidimensional complex space
    Clerc, M
    Kennedy, J
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) : 58 - 73
  • [2] Clerc M., 2002, Proceedings of the 1999 Congress on Evolutionary Computation, DOI DOI 10.1109/CEC.1999.785513
  • [3] Clerc Maurice., 2003, Optimisation par Essaim Particulaire
  • [4] Eberhart RC, 2000, IEEE C EVOL COMPUTAT, P84, DOI 10.1109/CEC.2000.870279
  • [5] Kalman RE., 1960, J BASIC ENG, V82, P35, DOI DOI 10.1115/1.3662552
  • [6] Kenndy J., 1995, P IEEE INT C NEUR NE, V4, P1942, DOI [10.4018/ijmfmp.2015010104, DOI 10.4018/IJMFMP.2015010104]
  • [7] Bare bones particle swarms
    Kennedy, J
    [J]. PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, : 80 - 87
  • [8] Kennedy J., 2001, SWARM INTELLIGENCE
  • [9] LEONDES CT, 1970, AGARDOGRAPH, V139
  • [10] Watch thy neighbor or how the swarm can learn from its environment
    Mendes, R
    Kennedy, J
    Neves, J
    [J]. PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, : 88 - 94