Analysis of a diffuse interface model of multispecies tumor growth

被引:54
作者
Dai, Mimi [1 ]
Feireisl, Eduard [2 ]
Rocca, Elisabetta [3 ]
Schimperna, Giulio [3 ]
Schonbek, Maria E. [4 ]
机构
[1] Univ Illinois, Dept Math, 851 S Morgan St, Chicago, IL 60607 USA
[2] Acad Sci Czech Republ, Inst Math, Zitna 25, CZ-11567 Prague 1, Czech Republic
[3] Univ Studi Pavia, Dipartimento Matemat F Casorati, Via Ferrata 1, I-27100 Pavia, Italy
[4] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
基金
欧洲研究理事会;
关键词
tumor growth; diffuse interface model; Cahn-Hilliard equation; reaction-diffusion equation; Darcy law; weak solution; singular limits; CAHN-HILLIARD SYSTEM; LONG-TIME BEHAVIOR; WELL-POSEDNESS; ACTIVE-TRANSPORT; CHEMOTAXIS; INVASION;
D O I
10.1088/1361-6544/aa6063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a diffuse interface model for tumor growth recently proposed in Chen et al (2014 Int. J. Numer. Methods Biomed. Eng. 30 726-54). In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn-Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity u satisfies u.v > 0, where. is the outer normal to the boundary of the domain.
引用
收藏
页码:1639 / 1658
页数:20
相关论文
共 29 条
[1]   A history of the study of solid tumour growth: The contribution of mathematical modelling [J].
Araujo, RP ;
McElwain, DLS .
BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (05) :1039-1091
[2]   ON THE CAHN-HILLIARD-BRINKMAN SYSTEM [J].
Bosia, Stefano ;
Conti, Monica ;
Grasselli, Maurizio .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (06) :1541-1567
[3]   Modelling aspects of cancer dynamics: a review [J].
Byrne, H. M. ;
Alarcon, T. ;
Owen, M. R. ;
Webb, S. D. ;
Maini, P. K. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1843) :1563-1578
[4]   Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture [J].
Chatelain, C. ;
Balois, T. ;
Ciarletta, P. ;
Ben Amar, M. .
NEW JOURNAL OF PHYSICS, 2011, 13
[5]   A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane [J].
Chen, Ying ;
Wise, Steven M. ;
Shenoy, Vivek B. ;
Lowengrub, John S. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2014, 30 (07) :726-754
[6]   ASYMPTOTIC ANALYSES AND ERROR ESTIMATES FOR A CAHN-HILLIARD TYPE PHASE FIELD SYSTEM MODELLING TUMOR GROWTH [J].
Colli, Pierluigi ;
Gilardi, Gianni ;
Rocca, Elisabetta ;
Sprekels, Juergen .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (01) :37-54
[7]   Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth [J].
Colli, Pierluigi ;
Gilardi, Gianni ;
Rocca, Elisabetta ;
Sprekels, Juergen .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 26 :93-108
[8]   ON A CAHN-HILLIARD TYPE PHASE FIELD SYSTEM RELATED TO TUMOR GROWTH [J].
Colli, Pierluigi ;
Gilardi, Gianni ;
Hilhorst, Danielle .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (06) :2423-2442
[9]  
Cristini V, 2010, Multiscale modeling of cancer. An Integrated Experimental and Mathematical Modeling Approach, DOI DOI 10.1017/CBO9780511781452
[10]   Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching [J].
Cristini, Vittorio ;
Li, Xiangrong ;
Lowengrub, John S. ;
Wise, Steven M. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (4-5) :723-763