DETERMINING THE SIGNAL DIMENSION IN SECOND ORDER SOURCE SEPARATION

被引:9
作者
Virta, Joni [1 ]
Nordhausen, Klaus [2 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
[2] Vienna Univ Technol, Inst Stat & Math Methods Econ, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
Blind source separation; chi-square distribution; second order blind identification; second order stationarity; white noise; BOOTSTRAP;
D O I
10.5705/ss.202018.0347
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Despite being an important topic in practice, estimating the number of non-noise components in blind source separation has received little attention in the literature. Recently, two bootstrap-based techniques for estimating the dimension were proposed; however, although very efficient, they suffer from long computation times as a result of the resampling. We approach the problem from a large-sample viewpoint, and develop an asymptotic test and a corresponding consistent estimate for the true dimension. Our test statistic based on second-order temporal information has a very simple limiting distribution under the null hypothesis, and requires no parameters to estimate. Comparisons with resampling-based estimates show that the asymptotic test provides comparable error rates, with significantly faster computation times. Lastly, we illustrate the method by applying it to sound recording data.
引用
收藏
页码:135 / 156
页数:22
相关论文
共 21 条
  • [1] A blind source separation technique using second-order statistics
    Belouchrani, A
    AbedMeraim, K
    Cardoso, JF
    Moulines, E
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) : 434 - 444
  • [2] Comon P, 2010, HANDBOOK OF BLIND SOURCE SEPARATION: INDEPENDENT COMPONENT ANALYSIS AND APPLICATIONS, P1
  • [3] Time series factor models
    Ensor, Katherine Bennett
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (02) : 97 - 104
  • [4] Model selection using limiting distributions of second-order blind source separation algorithms
    Illner, Katrin
    Miettinen, Jari
    Fuchs, Christiane
    Taskinen, Sara
    Nordhausen, Klaus
    Oja, Hannu
    Theis, Fabian J.
    [J]. SIGNAL PROCESSING, 2015, 113 : 95 - 103
  • [5] Combining eigenvalues and variation of eigenvectors for order determination
    Luo, Wei
    Li, Bing
    [J]. BIOMETRIKA, 2016, 103 (04) : 875 - 887
  • [6] Matilainen M., 2018, TSBSS BLIND SOURCE S
  • [7] Matilainen M., 2018, INT C LAT VAR AN SIG, P248
  • [8] Blind Source Separation Based on Joint Diagonalization in R: The Packages JADE and BSSasymp
    Miettinen, Jari
    Nordhausen, Klaus
    Taskinen, Sara
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (02): : 1 - 31
  • [9] Separation of Uncorrelated Stationary time series using Autocovariance Matrices
    Miettinen, Jari
    Illner, Katrin
    Nordhausen, Klaus
    Oja, Hannu
    Taskinen, Sara
    Theis, Fabian J.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (03) : 337 - 354
  • [10] Deflation-based separation of uncorrelated stationary time series
    Miettinen, Jari
    Nordhausen, Klaus
    Oja, Hannu
    Taskinen, Sara
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 123 : 214 - 227