COEFFICIENT INEQUALITIES AND YAMASHITA'S CONJECTURE FOR SOME CLASSES OF ANALYTIC FUNCTIONS

被引:8
作者
Ali, Md Firoz [1 ]
Vasudevarao, A. [1 ]
机构
[1] IIT Kharagpur, Dept Math, Kharagpur 721302, W Bengal, India
关键词
univalent; starlike; convex and hypergeometric functions; coefficient bounds; radius of convexity; maximal area problem; FEKETE-SZEGO PROBLEM; TO-CONVEX FUNCTIONS; UNIVALENT-FUNCTIONS; INVERSE COEFFICIENTS; STARLIKE FUNCTIONS; SCHLICHT FUNCTIONS; INTEGRAL MEANS; SUBORDINATION; AREA;
D O I
10.1017/S1446788715000336
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any real number beta with beta > 1, let M (beta) (N (beta) respectively) denote the class of analytic functions f in the unit disk D : = { z is an element of C : vertical bar z vertical bar < 1} of the form f (z) = z + Sigma(infinity)(n=2) a(n)z(n) and satisfying Re P-f < beta (Re Q(f) < beta respectively) in D, where P-f = zf'(z) = f (z) and Q(f) = 1 + zf ''(z) = f'(z). Also, for beta > 1, let M Sigma(beta) (N Sigma(beta) respectively) denote the class of analytic functions g of the form g(z) = z(1 + Sigma(infinity)(n=1) b(n)z(-n)) and satisfying Re P-g < beta (Re Q(g) < beta respectively) for z is an element of Delta = {z is an element of C : 1 < vertical bar z vertical bar < infinity}. In this paper, we shall determine the coefficient bounds, inverse coefficient bounds, the growth and distortion theorem and the upper bounds for the Fekete-Szego functional Lambda(lambda) (f) = a(3) - lambda a(2)(2) for functions f in the classes M (beta) and N (beta). Further, we shall solve the maximal area problem for functions of the type z = f (z) when f is an element of M (beta), which is Yamashita's conjecture for the class M(beta). We shall obtain the radius of convexity for the class N Sigma(beta). We shall also determine the coefficient bounds for functions g in the classes M Sigma(beta) and N Sigma(beta) and the inverse coefficient bounds for functions g in the class M Sigma(beta). All the results are sharp.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 37 条
[1]  
1Ozaki S., 1941, I I. Sci.Rep. Tokyo Bunrika Daigaku. Sect., VA4, P45
[2]   THE FEKETE-SZEGO PROBLEM FOR STRONGLY CLOSE-TO-CONVEX FUNCTIONS [J].
ABDELGAWAD, HR ;
THOMAS, DK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (02) :345-349
[3]   On the Fekete-Szego problem for concave univalent functions [J].
Bhowmik, B. ;
Ponnusamy, S. ;
Wirths, K-J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :432-438
[4]  
Clunie J., 1959, J LOND MATH SOC, V34, P215, DOI DOI 10.1112/JLMS/S1-34.2.215
[5]  
Fekete M, 1933, J. London Math. Soc., V1, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]
[7]  
Goodman A. W., 1983, UNIVALENT FUNCTIONS
[8]   SUBORDINATION BY CONVEX FUNCTIONS [J].
HALLENBECK, DJ ;
RUSCHEWEYH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) :191-195
[10]  
Jovanovic I., 1995, Filomat, V9, P69