Differential kinetic and spatial patterns of β-arrestin and G protein-mediated ERK activation by the angiotensin II receptor

被引:425
作者
Ahn, SK
Shenoy, SK
Wei, HJ
Lefkowitz, RJ
机构
[1] Duke Univ, Med Ctr, Howard Hughes Med Inst, Dept Med, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
关键词
D O I
10.1074/jbc.M405878200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The seven-membrane-spanning angiotensin II type 1A receptor activates the mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 (ERK1/2) by distinct pathways dependent on either G protein (likely G(q)/G(11)) or beta-arrestin2. Here we sought to distinguish the kinetic and spatial patterns that characterize ERK1/2 activated by these two mechanisms. We utilized beta-arrestin RNA interference, the protein kinase C inhibitor Ro-31-8425, a mutant angiotensin II receptor (DRY/AAY), and a mutant angiotensin II peptide (SII-angiotensin), which are incapable of activating G proteins, to isolate the two pathways in HEK-293 cells. G protein-dependent activation was rapid (peak<2 min), quite transient (t(1/2) similar to 2 min), and led to nuclear translocation of the activated ERK1/2 as assessed by confocal microscopy. In contrast, beta-arrestin2-dependent activation was slower (peak 5-10 min), quite persistent with little decrement noted out to 90 min, and entirely confined to the cytoplasm. Moreover, ERK1/2 activated via beta-arrestin2 accumulated in a pool of cytoplasmic endosomal vesicles that also contained the internalized receptors and beta-arrestin. Such differential regulation of the temporal and spatial patterns of ERK1/2 activation via these two pathways strongly implies the existence of distinct physiological endpoints.
引用
收藏
页码:35518 / 35525
页数:8
相关论文
共 40 条
[1]   Desensitization, internalization, and signaling functions of β-arrestins demonstrated by RNA interference [J].
Ahn, S ;
Nelson, CD ;
Garrison, TR ;
Miller, WE ;
Lefkowitz, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (04) :1740-1744
[2]   Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by β-arrestins 1 and 2 [J].
Ahn, S ;
Wei, HJ ;
Garrison, TR ;
Lefkowitz, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (09) :7807-7811
[3]   Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: Molecular characterization of the involved signaling pathway [J].
Breitschopf, K ;
Haendeler, J ;
Malchow, P ;
Zeiher, AM ;
Dimmeler, S .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (05) :1886-1896
[4]   GROWTH FACTOR-STIMULATED MAP KINASE INDUCES RAPID RETROPHOSPHORYLATION AND INHIBITION OF MAP KINASE KINASE (MEK1) [J].
BRUNET, A ;
PAGES, G ;
POUYSSEGUR, J .
FEBS LETTERS, 1994, 346 (2-3) :299-303
[5]   β-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2 [J].
DeFea, KA ;
Zalevsky, J ;
Thoma, MS ;
Déry, O ;
Mullins, RD ;
Bunnett, NW .
JOURNAL OF CELL BIOLOGY, 2000, 148 (06) :1267-1281
[6]   The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex [J].
DeFea, KA ;
Vaughn, ZD ;
O'Bryan, EM ;
Nishijima, D ;
Déry, O ;
Bunnett, NW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (20) :11086-11091
[7]   Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade - Role of focal adhesions and receptor tyrosine kinases [J].
Della Rocca, GJ ;
Maudsley, S ;
Daaka, Y ;
Lefkowitz, RJ ;
Luttrell, LM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (20) :13978-13984
[8]   MAPK-dependent degradation of G protein-coupled receptor kinase 2 [J].
Elorza, A ;
Penela, P ;
Sarnago, S ;
Mayor, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (31) :29164-29173
[9]   The role of a conserved region of the second intracellular loop in AT1 angiotensin receptor activation and signaling [J].
Gáborik, Z ;
Jagadeesh, G ;
Zhang, M ;
Spät, A ;
Catt, KJ ;
Hunyady, L .
ENDOCRINOLOGY, 2003, 144 (06) :2220-2228
[10]   IEX-1: a new ERK substrate involved in both ERK survival activity and ERK activation [J].
Garcia, J ;
Ye, YB ;
Arranz, V ;
Letourneux, C ;
Pezeron, G ;
Porteu, F .
EMBO JOURNAL, 2002, 21 (19) :5151-5163