Asymptotic and Finite-Time Cluster Synchronization of Coupled Fractional-Order Neural Networks With Time Delay

被引:106
|
作者
Liu, Peng [1 ,2 ]
Zeng, Zhigang [3 ,4 ]
Wang, Jun [5 ,6 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ Light Ind, Henan Key Lab Informat Based Elect Appliances, Zhengzhou 450002, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Key Lab Image Proc & Intelligent Control, Educ Minist China, Wuhan 430074, Peoples R China
[5] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[6] City Univ Hong Kong, Sch Data Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Synchronization; Neural networks; Complex networks; Delays; Calculus; Delay effects; Mathematical model; Filippov solution; finite-time cluster synchronization; fractional-order neural networks; GLOBAL EXPONENTIAL SYNCHRONIZATION; COMPLEX DYNAMICAL NETWORKS; VARIABLE CHAOTIC SYSTEMS; UNKNOWN-PARAMETERS; STABILITY; CALCULUS;
D O I
10.1109/TNNLS.2019.2962006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article is devoted to the cluster synchronization issue of coupled fractional-order neural networks. By introducing the stability theory of fractional-order differential systems and the framework of Filippov regularization, some sufficient conditions are derived for ascertaining the asymptotic and finite-time cluster synchronization of coupled fractional-order neural networks, respectively. In addition, the upper bound of the settling time for finite-time cluster synchronization is estimated. Compared with the existing works, the results herein are applicable for fractional-order systems, which could be regarded as an extension of integer-order ones. A numerical example with different cases is presented to illustrate the validity of theoretical results.
引用
收藏
页码:4956 / 4967
页数:12
相关论文
共 50 条
  • [41] Finite-Time Synchronization of Fractional-Order Fuzzy Time-Varying Coupled Neural Networks Subject to Reaction-Diffusion
    Xu, Yao
    Liu, Wenxi
    Wu, Yongbao
    Li, Wenxue
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (10) : 3423 - 3432
  • [42] Cluster Synchronization of Fractional-Order Nonlinearly-Coupling Community Networks With Time-Varying Disturbances and Multiple Delays
    Fan, Hongguang
    Zhao, Yi
    IEEE ACCESS, 2021, 9 : 60934 - 60945
  • [43] Finite-time synchronization of fractional order neural networks via sampled data control with time delay
    Jose, S.
    Parthiban, V.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 35 (04): : 374 - 387
  • [44] Finite-time synchronization for different dimensional fractional-order complex dynamical networks
    Lu, Jiyong
    Guo, Yanping
    Ji, Yude
    Fan, Shuangshuang
    CHAOS SOLITONS & FRACTALS, 2020, 130
  • [45] On Finite-Time Stability for Fractional-Order Neural Networks with Proportional Delays
    Xu, Changjin
    Li, Peiluan
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1241 - 1256
  • [46] Finite-time synchronization and parameter identification of uncertain fractional-order complex networks
    Li, Hong-Li
    Cao, Jinde
    Jiang, Haijun
    Alsaedi, Ahmed
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 533
  • [47] Global Finite-time Stability for Fractional-order Neural Networks
    Hu, Xiaolong
    OPTICAL MEMORY AND NEURAL NETWORKS, 2020, 29 (02) : 77 - 99
  • [48] Finite-time synchronization of delayed fractional-order heterogeneous complex networks
    Li, Ying
    Kao, Yonggui
    Wang, Changhong
    Xia, Hongwei
    NEUROCOMPUTING, 2020, 384 : 368 - 375
  • [49] Stability Analysis and Synchronization Control of Fractional-Order Inertial Neural Networks With Time-Varying Delay
    Liu, Yihong
    Sun, Yeguo
    Liu, Lei
    IEEE ACCESS, 2022, 10 : 56081 - 56093
  • [50] New results on finite-time stability of fractional-order neural networks with time-varying delay
    Thanh, Nguyen T.
    Niamsup, P.
    Phat, Vu N.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (24) : 17489 - 17496