Impedance analysis of thin YSZ electrolyte for low-temperature solid oxide fuel cells

被引:11
作者
DiGiuseppe, Gianfranco [1 ]
Thompson, David [2 ]
Gumeci, Cenk [2 ]
Hussain, A. Mohammed [2 ]
Dale, Nilesh [2 ]
机构
[1] Kettering Univ, 1700 Univ Ave, Flint, MI 48504 USA
[2] Nissan Tech Ctr North Amer, 39001 Sunrise Dr, Farmington Hills, MI 48331 USA
关键词
Low temperature SOFC; Thin YSZ; LSCF cathode; GDC barrier layer; RELAXATION-TIMES; PROGRESS; MOBILE; SYSTEM;
D O I
10.1007/s11581-019-02935-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid oxide fuel cells based on yttria-stabilized zirconia materials have demonstrated a higher level of technology maturity compared to newer materials actively researched to lower the operating temperature. Yttria-stabilized zirconia-based cells can operate around 600 degrees C and achieve competitive power densities provided the electrolyte can be fabricated relatively thin. In this work, a 2.5-mu m thick yttria-stabilized zirconia electrolyte, commercially available, anode-supported solid oxide fuel cell is systematically investigated under various electrochemical conditions, and area of improvements with the electrochemical performance are identified. The cell consists of a Ni-YSZ bulk and functional layer anode, YSZ electrolyte, GDC barrier layer, and LSCF cathode. Using humidified hydrogen, the peak power densities are determined to be 0.31, 0.58, 0.96, 1.41, and 1.78W/cm(2) at 600, 650, 700, 750, and 800 degrees C, respectively. It is found that the ceria barrier layer is porous; thus, it is not effective to avoid the formation of strontium zirconate. It is therefore expected that the performance can be improved further if a denser ceria barrier layer can be deposited. In addition, energy dispersive spectroscopy analysis revealed significant Ce/Zr interdiffusion between the barrier layer and the electrolyte.
引用
收藏
页码:3537 / 3548
页数:12
相关论文
共 30 条
  • [1] The effect of coupled mass transport and internal reforming on modeling of solid oxide fuel cells part I: Channel-level model development and steady-state comparison
    Albrecht, Kevin J.
    Braun, Robert J.
    [J]. JOURNAL OF POWER SOURCES, 2016, 304 : 384 - 401
  • [2] Influence of current collecting and functional layer thickness on the performance stability of La0.6Sr0.4Co0.2Fe0.8O3--Ce0.8Sm0.2O1.9 composite cathode
    Ali, S. A. Muhammed
    Anwar, Mustafa
    Mahmud, Lily Siong
    Kalib, Noor Shieela
    Muchtar, Andanastuti
    Somalu, Mahendra Rao
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (04) : 1155 - 1164
  • [3] A LINEAR KRONIG-KRAMERS TRANSFORM TEST FOR IMMITTANCE DATA VALIDATION
    BOUKAMP, BA
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) : 1885 - 1894
  • [4] Fourier transform distribution function of relaxation times; application and limitations
    Boukamp, Bernard A.
    [J]. ELECTROCHIMICA ACTA, 2015, 154 : 35 - 46
  • [5] Engineering FEA Sintering Model Development for Metal Supported SOFC
    Chatzimichail, R.
    Dawson, R.
    Green, S.
    Sullivan, D.
    Mukerjee, S.
    Selby, M.
    [J]. SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 2773 - 2783
  • [6] Chen Y, 2018, JOULE, V2, P1, DOI [10.1016/j.joule.2017.10.014, DOI 10.1016/J.JOULE.2017.10.014]
  • [7] Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ
    Choi, Sihyuk
    Yoo, Seonyoung
    Kim, Jiyoun
    Park, Seonhye
    Jun, Areum
    Sengodan, Sivaprakash
    Kim, Junyoung
    Shin, Jeeyoung
    Jeong, Hu Young
    Choi, YongMan
    Kim, Guntae
    Liu, Meilin
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [8] Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells
    Duan, Chuancheng
    Kee, Robert J.
    Zhu, Huayang
    Karakaya, Canan
    Chen, Yachao
    Ricote, Sandrine
    Jarry, Angelique
    Crumlin, Ethan J.
    Hook, David
    Braun, Robert
    Sullivan, Neal P.
    O'Hayre, Ryan
    [J]. NATURE, 2018, 557 (7704) : 217 - +
  • [9] Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 °C with Chemically Stable Proton-Conducting Electrolytes
    Fabbri, Emiliana
    Bi, Lei
    Pergolesi, Daniele
    Traversa, Enrico
    [J]. ADVANCED MATERIALS, 2012, 24 (02) : 195 - 208
  • [10] A perspective on low-temperature solid oxide fuel cells
    Gao, Zhan
    Mogni, Liliana V.
    Miller, Elizabeth C.
    Railsback, Justin G.
    Barnett, Scott A.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) : 1602 - 1644