Rapid high resolution T1 mapping as a marker of brain development: Normative ranges in key regions of interest

被引:32
作者
Eminian, Sylvain [1 ]
Hajdu, Steven David
Meuli, Reto Antoine
Maeder, Philippe
Hagmann, Patric
机构
[1] Univ Lausanne, Dept Diagnost & Intervent Radiol, Lausanne, Vaud, Switzerland
关键词
AGE-RELATED-CHANGES; APPARENT DIFFUSION-COEFFICIENT; TENSOR IMAGING ASSESSMENT; WHITE-MATTER MATURATION; PEDIATRIC BRAIN; NORMAL MYELINATION; RELAXATION-TIMES; WATER DIFFUSION; T-2; RELAXATION; INFANT BRAIN;
D O I
10.1371/journal.pone.0198250
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objectives We studied in a clinical setting the age dependent T1 relaxation time as a marker of normal late brain maturation and compared it to conventional techniques, namely the apparent diffusion coefficient (ADC). Materials and methods Forty-two healthy subjects ranging from ages 1 year to 20 years were included in our study. T1 brain maps in which the intensity of each pixel corresponded to T1 relaxation times were generated based on MR imaging data acquired using a MP2RAGE sequence. During the same session, diffusion tensor imaging data was collected. T1 relaxation times and ADC in white matter and grey matter were measured in seven clinically relevant regions of interest and were correlated to subjects' age. Results In the basal ganglia, there was a small, yet significant, decrease in T1 relaxation time (-0.45 <= R <= -0.59, p<10 -2 ) and ADC (-0.60 <= R <= -0.65, p<10(-4)) as a function of age. In the frontal and parietal white matter, there was a significant decrease in T1 relaxation time (-0.62 <= R <= -0.68, p<10(-4)) and ADC (-0.81 <= R <= -0.85, p<10(-4)) as a function of age. T1 relaxation time changes in the corpus callosum and internal capsule were less relevant for this age range. There was no significant difference between the correlation of T1 relaxation time and ADC with respect to age (p-value = 0.39). The correlation between T1 relaxation and ADC is strong in the white matter but only moderate in basal ganglia over this age period. Conclusions T1 relaxation time is a marker of brain maturation or myelination during late brain development. Between the age of 1 and 20 years, T1 relaxation time decreases as a function of age in the white matter and basal ganglia. The greatest changes occur in frontal and parietal white matter. These regions are known to mature in the final stage of development and are mainly composed of association circuits. Age-correlation is not significantly different between T1 relaxation time and ADC. Therefore, T1 relaxation time does not appear to be a superior marker of brain maturation than ADC but may be considered as complementary owing the intrinsic differences in bio-physical sensitivity. This work may serve as normative ranges in clinical imaging routines.
引用
收藏
页数:16
相关论文
共 49 条
[1]   Adult age differences in subcortical myelin content are consistent with protracted myelination and unrelated to diffusion tensor imaging indices [J].
Arshad, Muzamil ;
Stanley, Jeffrey A. ;
Raz, Naftali .
NEUROIMAGE, 2016, 143 :26-39
[2]   Magnetic resonance imaging and diffusion-weighted imaging of normal-appearing white matter in children and young adults with tuberous sclerosis complex [J].
Arulrajah, Sahayini ;
Ertan, Gulhan ;
Jordan, Lori ;
Tekes, Aylin ;
Khaykin, Elizabeth ;
Izbudak, Izlem ;
Huisman, Thierry A. G. M. .
NEURORADIOLOGY, 2009, 51 (11) :781-786
[3]   The role of diffusion MRI in neuroscience [J].
Assaf, Yaniv ;
Johansen-Berg, Heidi ;
de Schotten, Michel Thiebaut .
NMR IN BIOMEDICINE, 2019, 32 (04)
[4]   NORMAL MATURATION OF THE NEONATAL AND INFANT BRAIN - MR IMAGING AT 1.5 T [J].
BARKOVICH, AJ ;
KJOS, BO ;
JACKSON, DE ;
NORMAN, D .
RADIOLOGY, 1988, 166 (01) :173-180
[5]   Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review [J].
Basser, PJ ;
Jones, DK .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :456-467
[6]   The basis of anisotropic water diffusion in the nervous system - a technical review [J].
Beaulieu, C .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :435-455
[7]   Normal Myelination: A Practical Pictorial Review [J].
Branson, Helen M. .
NEUROIMAGING CLINICS OF NORTH AMERICA, 2013, 23 (02) :183-195
[8]   Establishing norms for age-related changes in proton T-1 of human brain tissue in vivo [J].
Cho, S ;
Jones, D ;
Reddick, WE ;
Ogg, RJ ;
Steen, RG .
MAGNETIC RESONANCE IMAGING, 1997, 15 (10) :1133-1143
[9]   Optimized inversion-time schedules for quantitative T1 measurements based on high-resolution multi-inversion EPI [J].
Cohen, Ouri ;
Polimeni, Jonathan R. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (04) :2101-2112
[10]   T1 relaxometry of crossing fibres in the human brain [J].
De Santis, Silvia ;
Assaf, Yaniv ;
Jeurissen, Ben ;
Jones, Derek K. ;
Roebroeck, Alard .
NEUROIMAGE, 2016, 141 :133-142