Global existence of entropy-weak solutions to the compressible Navier-Stokes equations with non-linear density dependent viscosities

被引:23
作者
Bresch, Didier [1 ]
Vasseur, Alexis [2 ,3 ]
Yu, Cheng [4 ]
机构
[1] Univ Savoie Mt Blanc, LAMA, UMR5127, CNRS, Batiment Chablais, F-73376 Le Bourget Du Lac, France
[2] Univ Texas Austin, Dept Math, 1 Univ Stn C1200, Austin, TX 78712 USA
[3] Oden Inst, 1 Univ Stn C1200, Austin, TX 78712 USA
[4] Univ Florida, Dept Math, POB 118105, Gainesville, FL 32611 USA
关键词
Global weak solutions; compressible Navier-Stokes equations; vacuum; degenerate viscosities; APPROXIMATE SOLUTIONS; KORTEWEG; PRESSURE; MODEL; FLUID; COMPACTNESS; 1D;
D O I
10.4171/JEMS/1143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we considerably extend the results on global existence of entropy-weak solutions to the compressible Navier-Stokes system with density dependent viscosities obtained, independently (using different strategies) by Vasseur-Yu [Invent. Math. 206 (2016) and arXiv:1501.06803 (2015)] and by Li-Xin [arXiv:1504.06826 (2015)]. More precisely, we are able to consider a physical symmetric viscous stress tensor sigma = 2 mu(rho)D(u) + (lambda(rho) div u - P(rho)) Id where D(u) = [del u + del(T)u]/2 with shear and bulk viscosities (respectively mu(rho) and lambda(rho)) satisfying the BD relation lambda(rho) = 2(mu'(rho)rho - mu(rho)) and a pressure law P(rho) = ap(gamma) (with a > 0 a given constant) for any adiabatic constant gamma > 1. The non-linear shear viscosity mu(rho) satisfies some lower and upper bounds for low and high densities (our result includes the case mu(rho) = mu rho(alpha) with 2/3 < alpha < 4 and mu > 0 constant). This provides an answer to a longstanding question on compressible Navier-Stokes equations with density dependent viscosities, mentioned for instance by F. Rousset [Bourbaki 69eme armee, 2016-2017, exp. 1135].
引用
收藏
页码:1791 / 1837
页数:47
相关论文
共 52 条
[41]   On the barotropic compressible Navier-Stokes equations [J].
Mellet, A. ;
Vasseur, A. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (03) :431-452
[42]   APPROXIMATE SOLUTIONS TO A MODEL OF TWO-COMPONENT REACTIVE FLOW [J].
Mucha, Piotr Boguslaw ;
Pokorny, Milan ;
Zatorska, Ewelina .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (05) :1079-1099
[43]   Weak solutions for a bi-fluid model for a mixture of two compressible non interacting fluids [J].
Novotny, Antonin .
SCIENCE CHINA-MATHEMATICS, 2020, 63 (12) :2399-2414
[44]   Weak Solutions for Some Compressible Multicomponent Fluid Models [J].
Novotny, Antonin ;
Pokorny, Milan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 235 (01) :355-403
[45]   ISOTHERMAL NAVIER-STOKES EQUATIONS AND RADON TRANSFORM [J].
Plotnikov, P. I. ;
Weigant, W. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) :626-653
[46]  
Rousset F., 2019, SEMINAIRE BOURBAKI, V407, P565, DOI 10.24033/ast.SeminaireBourbaki.Vol.2016/2017
[47]  
SERRE D, 1986, CR ACAD SCI I-MATH, V303, P639
[48]  
Vaigant V. A., 1995, SIB MAT ZH SIBIRSK MAT ZH, V36, P1283
[49]   Global weak solution to the viscous two-fluid model with finite energy [J].
Vasseur, Alexis ;
Wen, Huanyao ;
Yu, Cheng .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 :247-282
[50]   Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations [J].
Vasseur, Alexis F. ;
Yu, Cheng .
INVENTIONES MATHEMATICAE, 2016, 206 (03) :935-974