Global existence of entropy-weak solutions to the compressible Navier-Stokes equations with non-linear density dependent viscosities

被引:22
作者
Bresch, Didier [1 ]
Vasseur, Alexis [2 ,3 ]
Yu, Cheng [4 ]
机构
[1] Univ Savoie Mt Blanc, LAMA, UMR5127, CNRS, Batiment Chablais, F-73376 Le Bourget Du Lac, France
[2] Univ Texas Austin, Dept Math, 1 Univ Stn C1200, Austin, TX 78712 USA
[3] Oden Inst, 1 Univ Stn C1200, Austin, TX 78712 USA
[4] Univ Florida, Dept Math, POB 118105, Gainesville, FL 32611 USA
关键词
Global weak solutions; compressible Navier-Stokes equations; vacuum; degenerate viscosities; APPROXIMATE SOLUTIONS; KORTEWEG; PRESSURE; MODEL; FLUID; COMPACTNESS; 1D;
D O I
10.4171/JEMS/1143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we considerably extend the results on global existence of entropy-weak solutions to the compressible Navier-Stokes system with density dependent viscosities obtained, independently (using different strategies) by Vasseur-Yu [Invent. Math. 206 (2016) and arXiv:1501.06803 (2015)] and by Li-Xin [arXiv:1504.06826 (2015)]. More precisely, we are able to consider a physical symmetric viscous stress tensor sigma = 2 mu(rho)D(u) + (lambda(rho) div u - P(rho)) Id where D(u) = [del u + del(T)u]/2 with shear and bulk viscosities (respectively mu(rho) and lambda(rho)) satisfying the BD relation lambda(rho) = 2(mu'(rho)rho - mu(rho)) and a pressure law P(rho) = ap(gamma) (with a > 0 a given constant) for any adiabatic constant gamma > 1. The non-linear shear viscosity mu(rho) satisfies some lower and upper bounds for low and high densities (our result includes the case mu(rho) = mu rho(alpha) with 2/3 < alpha < 4 and mu > 0 constant). This provides an answer to a longstanding question on compressible Navier-Stokes equations with density dependent viscosities, mentioned for instance by F. Rousset [Bourbaki 69eme armee, 2016-2017, exp. 1135].
引用
收藏
页码:1791 / 1837
页数:47
相关论文
共 52 条
[1]  
Alazard T., 2020, ARXIV200403440
[2]  
Antonelli P., 2019, ARXIV190302441
[3]   On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids [J].
Antonelli, Paolo ;
Spirito, Stefano .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 :110-124
[4]   On the compactness of finite energy weak solutions to the quantum Navier-Stokes equations [J].
Antonelli, Paolo ;
Spirito, Stefano .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2018, 15 (01) :133-147
[5]   Global Existence of Finite Energy Weak Solutions of Quantum Navier-Stokes Equations [J].
Antonelli, Paolo ;
Spirito, Stefano .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (03) :1161-1199
[6]  
BERNARDI C, 1991, COMMUN PART DIFF EQ, V16, P59
[7]   Some diffusive capillary models of Korteweg type [J].
Bresch, D ;
Desjardins, B .
COMPTES RENDUS MECANIQUE, 2004, 332 (11) :881-886
[8]   Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model [J].
Bresch, D ;
Desjardins, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) :211-223
[9]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[10]  
Bresch D., 2017, HDB MATH ANAL MECH V, P1547