Direct measurement of •OH and HO2• formation in •R + O2 reactions of cyclohexane and tetrahydropyran

被引:17
作者
Chen, Ming-Wei [1 ]
Rotavera, Brandon [2 ,3 ]
Chao, Wen [4 ,5 ]
Zador, Judit [1 ]
Taatjes, Craig A. [1 ]
机构
[1] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA
[2] Univ Georgia, Coll Engn, Athens, GA 30602 USA
[3] Univ Georgia, Dept Chem, Athens, GA 30602 USA
[4] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
[5] Natl Taiwan Univ, Dept Chem, Taipei 10617, Taiwan
关键词
ALKYL PLUS O-2; LOW-TEMPERATURE OXIDATION; PRODUCT FORMATION; RATE CONSTANTS; LIGNOCELLULOSIC BIOMASS; AUTOIGNITION CHEMISTRY; KINETICS; RADICALS; TETRAHYDROPYRAN; SPECTROSCOPY;
D O I
10.1039/c7cp08164b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Formation of the key general radical chain carriers, (OH)-O-center dot and HO2 center dot, during pulsed-photolytic Cl-center dot-initiated oxidation of tetrahydropyran and cyclohexane are measured with time-resolved infrared absorption in a temperature-controlled Herriott multipass cell in the temperature range of 500-750 K at 20 Torr. The experiments show two distinct timescales for HO2 center dot and (OH)-O-center dot formation in the oxidation of both fuels. Analysis of the timescales reveals striking differences in behavior between the two fuels. In both cyclohexane and tetrahydropyran oxidation, a faster timescale is strongly related to the ``well-skipping'' (R-center dot + O-2 -> alkene + HO2 center dot or cyclic ether + (OH)-O-center dot) mechanism and is expected to have, at most, a weak temperature dependence. Indeed, the fast HO2 center dot formation timescale is nearly temperature independent both for cyclohexyl + O-2 and for tetrahydropyranyl + O-2 below 700 K. A slower HO2 center dot formation timescale in cyclohexane oxidation is shown to be linked to the sequential R-center dot + O-2 -> ROO center dot -> alkene + HO2 center dot pathway, and displays a strong temperature dependence mainly from the final step ( with energy barrier similar to 32.5 kcal mol(-1)). In contrast, the slower HO2 center dot formation timescale in tetrahydropyran oxidation is surprisingly temperature insensitive across all measured temperatures. Although the (OH)-O-center dot formation timescales in tetrahydropyran oxidation show a temperature dependence similar to the cyclohexane oxidation, the temperature dependence of (OH)-O-center dot yield is opposite in both cases. This significant difference of HO2 center dot formation kinetics and (OH)-O-center dot formation yield for the tetrahydropyran oxidation can arise from contributions related to ring-opening pathways in the tetrahydropyranyl + O-2 system that compete with the typical R-center dot + O-2 reaction scheme. This comparison of two similar fuels demonstrates the consequences of differing chemical mechanisms on (OH)-O-center dot and HO2 center dot formation and shows that they can be highlighted by analysis of the eigenvalues of a system of simplified kinetic equations for the alkylperoxy-centered R-center dot + O-2 reaction pathways. We suggest that such analysis can be more generally applied to complex or poorly known oxidation systems.
引用
收藏
页码:10815 / 10825
页数:11
相关论文
共 36 条
[21]   Understanding low-temperature first-stage ignition delay: Propane [J].
Merchant, Shamel S. ;
Goldsmith, C. Franklin ;
Vandeputte, Aaeron G. ;
Burke, Michael P. ;
Klippenstein, Stephen J. ;
Green, William H. .
COMBUSTION AND FLAME, 2015, 162 (10) :3658-3673
[22]   Comment on "When Rate Constants Are Not Enough" [J].
Miller, James A. ;
Klippenstein, Stephen J. ;
Robertson, Struan H. ;
Pilling, Michael J. ;
Shannon, Robin ;
Zador, Judit ;
Jasper, Ahren W. ;
Goldsmith, C. Franklin ;
Burke, Michael P. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (02) :306-312
[23]   Kinetic studies on the reactions of hydroxyl radicals with cyclic ethers and aliphatic diethers [J].
Moriarty, J ;
Sidebottom, H ;
Wenger, J ;
Mellouki, A ;
Le Bras, G .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (10) :1499-1505
[24]   Quantification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether [J].
Moshammer, Kai ;
Jasper, Ahren W. ;
Popolan-Vaida, Denisia M. ;
Wang, Zhandong ;
Shankar, Vijai Shankar Bhavani ;
Ruwe, Lena ;
Taatjes, Craig A. ;
Dagaut, Philippe ;
Hansen, Nils .
JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (40) :7890-7901
[25]   Second generation biofuels: Thermochemistry of glucose and fructose [J].
Osmont, A. ;
Catoire, L. ;
Bocanegra, P. Escot ;
Goekalp, I. ;
Thollas, B. ;
Kozinski, J. A. .
COMBUSTION AND FLAME, 2010, 157 (06) :1230-1234
[26]   Temperature controlled multiple pass absorption cell for gas phase chemical kinetics studies [J].
Pilgrim, JS ;
Jennings, RT ;
Taatjes, CA .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (04) :1875-1878
[27]   Influence of oxygenation in cyclic hydrocarbons on chain-termination reactions from R + O2: tetrahydropyran and cyclohexane [J].
Rotavera, Brandon ;
Savee, John D. ;
Antonov, Ivan O. ;
Caravan, Rebecca L. ;
Sheps, Leonid ;
Osborn, David L. ;
Zador, Judit ;
Taatjes, Craig A. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2017, 36 (01) :597-606
[28]   The HITRAN2012 molecular spectroscopic database [J].
Rothman, L. S. ;
Gordon, I. E. ;
Babikov, Y. ;
Barbe, A. ;
Benner, D. Chris ;
Bernath, P. F. ;
Birk, M. ;
Bizzocchi, L. ;
Boudon, V. ;
Brown, L. R. ;
Campargue, A. ;
Chance, K. ;
Cohen, E. A. ;
Coudert, L. H. ;
Devi, V. M. ;
Drouin, B. J. ;
Fayt, A. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Harrison, J. J. ;
Hartmann, J. -M. ;
Hill, C. ;
Hodges, J. T. ;
Jacquemart, D. ;
Jolly, A. ;
Lamouroux, J. ;
Le Roy, R. J. ;
Li, G. ;
Long, D. A. ;
Lyulin, O. M. ;
Mackie, C. J. ;
Massie, S. T. ;
Mikhailenko, S. ;
Mueller, H. S. P. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Orphal, J. ;
Perevalov, V. ;
Perrin, A. ;
Polovtseva, E. R. ;
Richard, C. ;
Smith, M. A. H. ;
Starikova, E. ;
Sung, K. ;
Tashkun, S. ;
Tennyson, J. ;
Toon, G. C. ;
Tyuterev, Vl. G. ;
Wagner, G. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2013, 130 :4-50
[29]   Kinetics and rate constants of the reaction CH2OH+O2 → CH2O+HO2 in the temperature range of 236-600 K [J].
Schocker, Alexander ;
Uetake, Masanori ;
Kanno, Nozomu ;
Koshi, Mitsuo ;
Tonokura, Kenichi .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (29) :6622-6627
[30]   Kinetics of the Hydrogen Atom Abstraction Reactions from 1-Butanol by Hydroxyl Radical: Theory Matches Experiment and More [J].
Seal, Prasenjit ;
Oyedepo, Gbenga ;
Truhlar, Donald G. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (02) :275-282