Tumor necrosis factor-alpha (TNF-alpha) binds to TNF-alpha receptors (TNFR) to produce a hexameric (TNF-alpha)(3)-(TNFR)(3) structure that stimulates apoptosis. We found by using ELISA that TNF-a binds to the glycosylphosphatidylinositol (GPI) anchor glycans of carcinoembryonic antigen, human placental alkaline phosphatase (hAP), and Tamm-Horsfall glycoprotein. These binding abilities were inhibited by 10(-6) M mannose-6-phosphate. Treatment of hAP with mild acid and phosphatase, which releases the N-acetyl-glucosamine (GlcNAc) beta1 --> phosphate 6 residue from the GPI-anchor glycan of hAP, abrogated the binding of TNF-alpha to hAP. Thus, TNF-alpha binds to the GlcNAcbeta1 phosphate --> 6Man residue in GPI-anchor glycans. To investigate whether the carbohydrate-binding ability of TNF-alpha is related to its physiological functions, human lymphoma U937 cells were used. TNF-alpha stimulates U937 cell apoptosis in a dose-dependent manner and the presence of mannose-6-phosphate inhibited this. TNF-alpha-dependent tyrosine phosphorylation of several proteins in U937 cells was also diminished by mannose-6-phosphate. Phosphatidylinositol-specific phospholipase C-pretreatment also inhibited this tyrosine phosphorylation. These data suggest that TNF-alpha stimulates U937 cell apoptosis by forming a high-affinity nanomeric (TNF-alpha)(3)-(TNFR)(3)-(GPI-anchored glycan)(3) complex. The GPI-anchored glycoprotein involved remains to be identified. (C) 2004 Elsevier Inc. All rights reserved.