Partial least-squares vs. Lanczos bidiagonalization -: I:: analysis of a projection method for multiple regression

被引:45
作者
Eldén, L [1 ]
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
关键词
partial least-squares; Lanczos bidiagonalization; singular value decomposition; principal components regression; Krylov subspace; chemometrics; shrinkage factors;
D O I
10.1016/S0167-9473(03)00138-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Multiple linear regression is considered and the partial least-squares method (PLS) for computing a projection onto a lower-dimensional subspace is analyzed. The equivalence of PLS to Lanczos bidiagonalization is a basic part of the analysis. Singular value analysis, Krylov subspaces, and shrinkage factors are used to explain why, in many cases, PLS gives a faster reduction of the residual than standard principal components regression. It is also shown why in some cases the dimension of the subspace, given by PLS, is not as small as desired. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 31
页数:21
相关论文
共 30 条
[1]  
ADOLFSSON T, 1999, STUDIES APPL PROBABI
[2]  
[Anonymous], 1996, PREDICTION METHODS S
[3]  
[Anonymous], 1989, MULTIVARIATE CALIBRA
[4]  
Axelsson O., 1994, ITERATIVE SOLUTION M
[5]  
Bjorck A, 1998, SIAM J MATRIX ANAL A, V19, P720
[6]  
Bjorck A., 1996, NUMERICAL METHODS LE, DOI DOI 10.1137/1.9781611971484
[7]  
Burnham AJ, 1996, J CHEMOMETR, V10, P31, DOI 10.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO
[8]  
2-1
[9]  
Dayal BS, 1997, J CHEMOMETR, V11, P73, DOI 10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO
[10]  
2-#