STRUCTURES CONCERNING GROUP OF UNITS

被引:4
作者
Chung, Young Woo [1 ]
Lee, Yang [2 ]
机构
[1] Kyungsung Univ, Sch Math & Appl Stat, Busan 48434, South Korea
[2] Pusan Natl Univ, Dept Math Educ, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
weakly right unit-duo ring; right unit-duo ring; group of units; Jacobson radical; Abelian ring; nilpotent element; pi-regular ring; right duo ring; weakly right duo ring; group ring; DUO; RINGS;
D O I
10.4134/JKMS.j150666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we consider the right unit-duo ring property on the powers of elements, and introduce the concept of weakly right unit duo ring. We investigate first the properties of weakly right unit-duo rings which are useful to the study of related studies. We observe next various kinds of relations and examples of weakly right unit-duo rings which do roles in ring theory.
引用
收藏
页码:177 / 191
页数:15
相关论文
共 50 条
[31]   Group algebras whose involutory units commute [J].
Bovdi, V ;
Dokuchaev, M .
ALGEBRA COLLOQUIUM, 2002, 9 (01) :49-64
[32]   Group Rings Whose Symmetric Units are Solvable [J].
Lee, Gregory T. ;
Spinelli, Ernesto .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (05) :1604-1618
[33]   UNITARY AND SYMMETRIC UNITS OF A COMMUTATIVE GROUP ALGEBRA [J].
Bovdi, V. A. ;
Grishkov, A. N. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (03) :641-654
[34]   Nilpotency class of symmetric units of group algebras [J].
Balogh, Zsolt ;
Juhasz, Tibor .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (1-2) :171-180
[35]   THE THIRD GROUP OF UNITS OF THE RING Z(n) [J].
Kadri, Therrar ;
El-Kassar, Abdul-Nasser .
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2016, 38 (04) :385-413
[36]   A 5-Engel associative algebra whose group of units is not 5-Engel [J].
Deryabina, Galina ;
Krasilnikov, Alexei .
JOURNAL OF ALGEBRA, 2019, 519 :101-110
[37]   GROUP RINGS WHOSE SYMMETRIC UNITS GENERATE AN n-ENGEL GROUP [J].
Lee, Gregory T. ;
Spinelli, Ernesto .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (11) :4056-4062
[38]   Units in abelian group algebras over indecomposable rings [J].
Danchev, Peter .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (04) :3-6
[39]   RINGS WITH AN ELEMENTARY ABELIAN p-GROUP OF UNITS [J].
Chebolu, Sunil K. ;
Corry, Jeremy ;
Grimm, Elizabeth ;
Hatfield, Andrew .
JOURNAL OF COMMUTATIVE ALGEBRA, 2023, 15 (04) :469-480
[40]   THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS III [J].
Woo, Sung Sik .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (04) :675-689