A nonparametric kernel regression approach for pricing options on stock market index

被引:7
作者
Kung, James J. [1 ]
机构
[1] Ming Chuan Univ, Dept Int Business, Taipei, Taiwan
关键词
Geometric Brownian motion; stock index option; nonparametric kernel regression; Nadaraya-Watson kernel estimator; Black-Scholes model; Stein-Stein model; C14; C15; G13; STOCHASTIC VOLATILITY; VARIANCE; DISTRIBUTIONS; VALUATION; MODELS;
D O I
10.1080/00036846.2015.1090549
中图分类号
F [经济];
学科分类号
02 ;
摘要
Previous options studies typically assume that the dynamics of the underlying asset price follow a geometric Brownian motion (GBM) when pricing options on stocks, stock indices, currencies or futures. However, there is mounting empirical evidence that the volatility of asset price or return is far from constant. This article, in contrast to studies that use parametric approach for option pricing, employs nonparametric kernel regression to deal with changing volatility and, accordingly, prices options on stock index. Specifically, we first estimate nonparametrically the volatility of asset return in the GBM based on the Nadaraya-Watson (N-W) kernel estimator. Then, based on the N-W estimates for the volatility, we use Monte Carlo simulation to compute option prices under different settings. Finally, we compare the index option prices under our nonparametric model with those under the Black-Scholes model and the Stein-Stein model.
引用
收藏
页码:902 / 913
页数:12
相关论文
共 50 条
[11]   Pattern Recognition Based on the Nonparametric Kernel Regression Method in A-share Market [J].
Sun, Huaiyu ;
Zhu, Mi ;
He, Feng .
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON SOFT COMPUTING TECHNIQUES AND ENGINEERING APPLICATION, ICSCTEA 2013, 2014, 250 :309-314
[12]   Reasonable evaluation of VIX options for the Taiwan stock index [J].
Huang, Hung-Hsi ;
Lin, Shin-Hung ;
Wang, Chiu-Ping .
NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2019, 48 :111-130
[13]   Robust nonparametric kernel regression estimator [J].
Zhao, Ge ;
Ma, Yanyuan .
STATISTICS & PROBABILITY LETTERS, 2016, 116 :72-79
[14]   Ensuring More Is Better: On the Simultaneous Application of Stock and Options Data to Estimate the GARCH Options Pricing Model [J].
Chang, Charles ;
Cheng, Hung-Wen ;
Fuh, Cheng-Der .
JOURNAL OF DERIVATIVES, 2018, 26 (01) :7-25
[15]   A NONPARAMETRIC METHOD FOR PRICING AND HEDGING AMERICAN OPTIONS [J].
Feng, Guiyun ;
Liu, Guangwu ;
Sun, Lihua .
2013 WINTER SIMULATION CONFERENCE (WSC), 2013, :691-+
[16]   The non-uniform pricing effect of employee stock options using quantile regression [J].
Kuo, Chii-Shyan ;
Yu, Shih-Ti .
NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2013, 26 :400-415
[17]   Pricing and Exercising American Options: an Asymptotic Expansion Approach [J].
Li, Chenxu ;
Ye, Yongxin .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2019, 107
[18]   Pricing of spread and exchange options in a rough jump-diffusion market [J].
Hainaut, Donatien .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 419
[19]   Pricing commodity index options [J].
Pedro Manzano-Herrero, Alberto ;
Nastasi, Emanuele ;
Pallavicini, Andrea ;
Vazquez, Carlos .
QUANTITATIVE FINANCE, 2023, 23 (02) :297-308
[20]   The role of time-varying jump risk premia in pricing stock index options [J].
Yun, Jaeho .
JOURNAL OF EMPIRICAL FINANCE, 2011, 18 (05) :833-846