Precise programmable quantum simulations with optical lattices

被引:23
作者
Qiu, Xingze [1 ,2 ]
Zou, Jie [1 ,2 ]
Qi, Xiaodong [3 ]
Li, Xiaopeng [1 ,2 ,4 ]
机构
[1] Fudan Univ, Inst Nanoelect & Quantum Comp, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[3] ICIQ Res, Hangzhou, Zhejiang, Peoples R China
[4] Shanghai Qi Zhi Inst, Shanghai 200232, Peoples R China
基金
中国国家自然科学基金;
关键词
MANY-BODY LOCALIZATION; ANDERSON LOCALIZATION; ULTRACOLD ATOMS; DELOCALIZATION; TRANSITION; INSULATOR; FERMIONS; SYSTEM;
D O I
10.1038/s41534-020-00315-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an efficient approach to precisely simulate tight binding models with optical lattices, based on programmable digital-micromirror-device (DMD) techniques. Our approach consists of a subroutine of Wegner-flow enabled precise extraction of a tight-binding model for a given optical potential, and a reverse engineering step of adjusting the potential for a targeting model, for both of which we develop classical algorithms to achieve high precision and high efficiency. With renormalization of Wannier functions and high band effects systematically calibrated in our protocol, we show the tight-binding models with programmable onsite energies and tunnelings can be precisely simulated with optical lattices integrated with the DMD techniques. With numerical simulation, we demonstrate that our approach would facilitate quantum simulation of localization physics with adequate programmability and atom-based boson sampling for illustration of quantum computational advantage. We expect this approach would pave a way towards large-scale and precise programmable quantum simulations based on optical lattices.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Quantum phases of dipolar bosons in one-dimensional optical lattices
    Kraus, Rebecca
    Chanda, Titas
    Zakrzewski, Jakub
    Morigi, Giovanna
    PHYSICAL REVIEW B, 2022, 106 (03)
  • [42] Quantum phase transitions of ultracold Bose systems in nonrectangular optical lattices
    Lin, Zhi
    Zhang, Jun
    Jiang, Ying
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [43] Quantum engineering of Majorana quasiparticles in one-dimensional optical lattices
    Ptok, Andrzej
    Cichy, Agnieszka
    Domanski, Tadeusz
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (35)
  • [44] Quantum many-body dynamics of dark solitons in optical lattices
    Mishmash, R. V.
    Danshita, I.
    Clark, Charles W.
    Carr, L. D.
    PHYSICAL REVIEW A, 2009, 80 (05):
  • [45] Quantum simulations with ultracold quantum gases
    Bloch, Immanuel
    Dalibard, Jean
    Nascimbene, Sylvain
    NATURE PHYSICS, 2012, 8 (04) : 267 - 276
  • [46] Quantum phases in tunable state-dependent hexagonal optical lattices
    Luehmann, Dirk-Soeren
    Juergensen, Ole
    Weinberg, Malte
    Simonet, Juliette
    Soltan-Panahi, Parvis
    Sengstock, Klaus
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [47] Optical Bragg, atomic Bragg and cavity QED detections of quantum phases and excitation spectra of ultracold atoms in bipartite and frustrated optical lattices
    Ye, Jinwu
    Zhang, K. Y.
    Li, Yan
    Chen, Yan
    Zhang, W. P.
    ANNALS OF PHYSICS, 2013, 328 : 103 - 138
  • [48] Antiferromagnetic noise correlations in optical lattices
    Bruun, G. M.
    Syljuasen, O. F.
    Pedersen, K. G. L.
    Andersen, B. M.
    Demler, E.
    Sorensen, A. S.
    PHYSICAL REVIEW A, 2009, 80 (03):
  • [49] Synchronization in non dissipative optical lattices
    Hennequin, D.
    Verkerk, P.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 57 (01) : 95 - 104
  • [50] Microscopic theory of the Hubbard interaction in low-dimensional optical lattices
    Adlong, Haydn S.
    Levinsen, Jesper
    Parish, Meera M.
    PHYSICAL REVIEW A, 2025, 111 (03)