Existence and Uniqueness of Uncertain Fractional Backward Difference Equations of Riemann-Liouville Type

被引:24
|
作者
Mohammed, Pshtiwan Othman [1 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
Jarad, Fahd [5 ]
Chu, Yu-Ming [6 ,7 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[5] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[6] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[7] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
关键词
MONOTONICITY ANALYSIS;
D O I
10.1155/2020/6598682
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we consider the analytic solutions of the uncertain fractional backward difference equations in the sense of Riemann-Liouville fractional operators which are solved by using the Picard successive iteration method. Also, we consider the existence and uniqueness theorem of the solution to an uncertain fractional backward difference equation via the Banach contraction fixed-point theorem under the conditions of Lipschitz constant and linear combination growth. Finally, we point out some examples to confirm the validity of the existence and uniqueness of the solution.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Uncertain fractional forward difference equations for Riemann-Liouville type
    Lu, Qinyun
    Zhu, Yuanguo
    Lu, Ziqiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [2] Existence of solutions for a class of nonlinear fractional difference equations of the Riemann-Liouville type
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Guirao, Juan L. G.
    Hamed, Y. S.
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [3] Uncertain fractional forward difference equations for Riemann–Liouville type
    Qinyun Lu
    Yuanguo Zhu
    Ziqiang Lu
    Advances in Difference Equations, 2019
  • [4] EXISTENCE AND CONTINUATION THEOREMS OF RIEMANN-LIOUVILLE TYPE FRACTIONAL DIFFERENTIAL EQUATIONS
    Kou, Chunhai
    Zhou, Huacheng
    Li, Changpin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [5] Results on Existence and Uniqueness of solutions of Fractional Differential Equations of Caputo-Fabrizio type in the sense of Riemann-Liouville
    Igobi, Dodi
    Udogworen, Wisdom
    IAENG International Journal of Applied Mathematics, 2024, 54 (06) : 1163 - 1171
  • [6] Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Ryoo, Cheon Seoung
    Hamed, Y. S.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (06)
  • [7] Existence and Uniqueness of Solution for a ψ-Riemann-Liouville Fractional Stochastic Differential Equation
    Hammami, Walid
    Horrigue, Samah
    Gasmi, Soufiane
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2025, 19 (03)
  • [8] Existence and Uniqueness Results for Nonlinear Implicit Riemann-Liouville Fractional Differential Equations with Nonlocal Conditions
    Lachouri, Adel
    Ardjouni, Abdelouaheb
    Djoudi, Ahcene
    FILOMAT, 2020, 34 (14) : 4881 - 4891
  • [9] Existence results for Riemann-Liouville fractional neutral evolution equations
    Liu, Yi-Liang
    Lv, Jing-Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [10] Existence results for Riemann-Liouville fractional neutral evolution equations
    Yi-Liang Liu
    Jing-Yun Lv
    Advances in Difference Equations, 2014