A recombination analysis of Cu(In,Ga)Se2 solar cells with low and high Ga compositions

被引:137
作者
Li, Jian V. [1 ]
Grover, Sachit [1 ]
Contreras, Miguel A. [1 ]
Ramanathan, Kannan [1 ]
Kuciauskas, Darius [1 ]
Noufi, Rommel [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
Recombination; CIGS; Interface; Open-circuit voltage; Bandgap; BAND OFFSET; PROSPECTS;
D O I
10.1016/j.solmat.2014.01.047
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Separation and quantification of recombination losses in thin-film Cu(In1-x Ga-x)Se-2 solar cells is paramount to understanding the current state-of-the-art and future improvements, but an effective characterization technique has been lacking. We use the recently developed temperature-illumination-dependent open-circuit voltage method to extract individual recombination rates at the buffer/absorber interface, in the space-charge region, and in the quasi-neutral region, as well as the carrier lifetime and surface recombination velocity for devices with low (x=30%) and high (x=84%) Ga absorbers. In the low-Ga absorber, recombination in the quasi-neutral region dominates. In the high-Ga absorber, interface recombination dominates. The open-circuit voltage deficit of the high-Ga device originates from an inadequacy of band bending in the absorber and a lack of strong inversion at the buffer/absorber interface. As two promising mitigating strategies for the open-circuit voltage deficit problem at high-Ga levels, we highlight a homojunction in the absorber or alternative transparent conducting oxides with low work function.(c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 25 条
[1]  
Chirila A, 2013, NAT MATER, V12, P1107, DOI [10.1038/NMAT3789, 10.1038/nmat3789]
[2]   Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency [J].
Contreras, Miguel A. ;
Mansfield, Lorelle M. ;
Egaas, Brian ;
Li, Jian ;
Romero, Manuel ;
Noufi, Rommel ;
Rudiger-Voigt, Eveline ;
Mannstadt, Wolfgang .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (07) :843-850
[3]  
Gloeckler M, 2003, WORL CON PHOTOVOLT E, P491
[4]   Reformulation of solar cell physics to facilitate experimental separation of recombination pathways [J].
Grover, Sachit ;
Li, Jian V. ;
Young, David L. ;
Stradins, Paul ;
Branz, Howard M. .
APPLIED PHYSICS LETTERS, 2013, 103 (09)
[5]   Effect of Ga content on defect states in CuIn1-xGaxSe2 photovoltaic devices [J].
Heath, JT ;
Cohen, JD ;
Shafarman, WN ;
Liao, DX ;
Rockett, AA .
APPLIED PHYSICS LETTERS, 2002, 80 (24) :4540-4542
[6]   Thin-film solar cells: Device measurements and analysis [J].
Hegedus, SS ;
Shafarman, WN .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3) :155-176
[7]   Current transport in CuInS2:Ga/Cds/Zno -: solar cells [J].
Hengel, I ;
Neisser, A ;
Klenk, R ;
Lux-Steiner, MC .
THIN SOLID FILMS, 2000, 361 :458-462
[8]   Prospects of wide-gap chalcopyrites for thin film photovoltaic modules [J].
Herberholz, R ;
Nadenau, V ;
Ruhle, U ;
Koble, C ;
Schock, HW ;
Dimmler, B .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1997, 49 (1-4) :227-237
[9]   New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20% [J].
Jackson, Philip ;
Hariskos, Dimitrios ;
Lotter, Erwin ;
Paetel, Stefan ;
Wuerz, Roland ;
Menner, Richard ;
Wischmann, Wiltraud ;
Powalla, Michael .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (07) :894-897
[10]  
Kuciauskas D., 2012, P IEEE 38 PHOT SPEC, P1721