Noncommutativity from the symplectic point of view

被引:42
作者
Abreu, E. M. C. [1 ]
Neves, C.
Oliveira, W.
机构
[1] Univ Fed Juiz De Fora, ICE, Dept Fis, BR-36036330 Juiz De Fora, MG, Brazil
[2] Univ Fed Rio de Janeiro, Dept Fis, BR-23890000 Rio De Janeiro, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2006年 / 21卷 / 26期
关键词
noncommutativity; symplectic formalism;
D O I
10.1142/S0217751X06034094
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The great deal in noncommutative (NC) field theories started when it was noted that NC spaces naturally arise in string theory with a constant background magnetic field in the presence of D-branes. In this work we explore how NC geometry can be introduced into a commutative field theory besides the usual introduction of the Moyal product. We propose a nonperturbative systematic new way to introduce NC geometry into commutative systems, based mainly on the symplectic approach. Further, as example, this formalism describes precisely how to obtain a Lagrangian description for the NC version of some systems reproducing well-known theories.
引用
收藏
页码:5359 / 5369
页数:11
相关论文
共 47 条
[11]  
BENERJEE R, 1998, J PHYS A, V31, pL603
[12]   CLASSICAL AND QUANTUM FIELD THEORIES IN THE LAGRANGIAN FORMALISM [J].
BERGMANN, PG ;
SCHILLER, R .
PHYSICAL REVIEW, 1953, 89 (01) :4-16
[13]   NON-LINEAR FIELD THEORIES [J].
BERGMANN, PG .
PHYSICAL REVIEW, 1949, 75 (04) :680-685
[14]  
Connell R.W., 1998, MEN MASC, V1, P3, DOI [10.1177/1097184X98001001001, DOI 10.1177/1097184X98001001001]
[15]   Wigner functions for the Landau problem in noncommutative spaces [J].
Dayi, ÖF ;
Kelleyane, LT .
MODERN PHYSICS LETTERS A, 2002, 17 (29) :1937-1944
[16]   Noncommutative relativistic particle on the electromagnetic background [J].
Deriglazov, AA .
PHYSICS LETTERS B, 2003, 555 (1-2) :83-88
[17]   Quantum mechanics on noncommutative plane and sphere from constrained systems [J].
Deriglazov, AA .
PHYSICS LETTERS B, 2002, 530 (1-4) :235-243
[18]  
DERIGLAZOV AA, HEPTH0110183
[19]  
DERIGLAZOV AA, HEPTH0208072
[20]  
Dirac P.A.M., 1964, LECT QUANTUM MECH