Differential Privacy in Privacy-Preserving Big Data and Learning: Challenge and Opportunity

被引:4
|
作者
Jiang, Honglu [1 ]
Gao, Yifeng [1 ]
Sarwar, S. M. [1 ]
GarzaPerez, Luis [1 ]
Robin, Mahmudul [1 ]
机构
[1] Univ Texas Rio Grande Valley, Edinburg, TX 78504 USA
来源
SILICON VALLEY CYBERSECURITY CONFERENCE, SVCC 2021 | 2022年 / 1536卷
关键词
Differential privacy; Deep learning; Big data;
D O I
10.1007/978-3-030-96057-5_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Differential privacy (DP) has become the de facto standard of privacy preservation due to its strong protection and sound mathematical foundation, which is widely adopted in different applications such as big data analysis, graph data process, machine learning, deep learning, and federated learning. Although DP has become an active and influential area, it is not the best remedy for all privacy problems in different scenarios. Moreover, there are also some misunderstanding, misuse, and great challenges of DP in specific applications. In this paper, we point out a series of limits and open challenges of corresponding research areas. Besides, we offer potentially new insights and avenues on combining differential privacy with other effective dimension reduction techniques and secure multiparty computing to clearly define various privacy models.
引用
收藏
页码:33 / 44
页数:12
相关论文
共 50 条
  • [41] TCPP: Achieving Privacy-Preserving Trajectory Correlation With Differential Privacy
    Wu, Lei
    Qin, Chengyi
    Xu, Zihui
    Guan, Yunguo
    Lu, Rongxing
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 4006 - 4020
  • [42] Privacy-Preserving Process Mining Differential Privacy for Event Logs
    Mannhardt, Felix
    Koschmider, Agnes
    Baracaldo, Nathalie
    Weidlich, Matthias
    Michael, Judith
    BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2019, 61 (05) : 595 - 614
  • [43] Privacy-preserving federated discovery of DNA motifs with differential privacy
    Chen, Yao
    Gan, Wensheng
    Huang, Gengsen
    Wu, Yongdong
    Yu, Philip S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [44] Privacy-Preserving in the Context of Data Mining and Deep Learning
    Altalhi, Amjaad
    Al-Saedi, Maram
    Alsuwat, Hatim
    Alsuwat, Emad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (06): : 137 - 142
  • [45] Privacy-preserving machine learning with multiple data providers
    Li, Ping
    Li, Tong
    Ye, Heng
    Li, Jin
    Chen, Xiaofeng
    Xiang, Yang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 87 : 341 - 350
  • [46] A Privacy-Preserving Federated Learning for Multiparty Data Sharing in Social IoTs
    Yin, Lihua
    Feng, Jiyuan
    Xun, Hao
    Sun, Zhe
    Cheng, Xiaochun
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (03): : 2706 - 2718
  • [47] Privacy-Preserving Localization for Underwater Acoustic Sensor Networks: A Differential Privacy-Based Deep Learning Approach
    Yan, Jing
    Zheng, Yuhan
    Yang, Xian
    Chen, Cailian
    Guan, Xinping
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 737 - 752
  • [48] An Adaptive Authenticated Data Structure With Privacy-Preserving for Big Data Stream in Cloud
    Sun, Yi
    Liu, Qian
    Chen, Xingyuan
    Du, Xuehui
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 : 3295 - 3310
  • [49] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [50] Privacy-Preserving Auction for Big Data Trading Using Homomorphic Encryption
    Gao, Weichao
    Yu, Wei
    Liang, Fan
    Hatcher, William Grant
    Lu, Chao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (02): : 776 - 791