Differential Privacy in Privacy-Preserving Big Data and Learning: Challenge and Opportunity

被引:4
|
作者
Jiang, Honglu [1 ]
Gao, Yifeng [1 ]
Sarwar, S. M. [1 ]
GarzaPerez, Luis [1 ]
Robin, Mahmudul [1 ]
机构
[1] Univ Texas Rio Grande Valley, Edinburg, TX 78504 USA
来源
SILICON VALLEY CYBERSECURITY CONFERENCE, SVCC 2021 | 2022年 / 1536卷
关键词
Differential privacy; Deep learning; Big data;
D O I
10.1007/978-3-030-96057-5_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Differential privacy (DP) has become the de facto standard of privacy preservation due to its strong protection and sound mathematical foundation, which is widely adopted in different applications such as big data analysis, graph data process, machine learning, deep learning, and federated learning. Although DP has become an active and influential area, it is not the best remedy for all privacy problems in different scenarios. Moreover, there are also some misunderstanding, misuse, and great challenges of DP in specific applications. In this paper, we point out a series of limits and open challenges of corresponding research areas. Besides, we offer potentially new insights and avenues on combining differential privacy with other effective dimension reduction techniques and secure multiparty computing to clearly define various privacy models.
引用
收藏
页码:33 / 44
页数:12
相关论文
共 50 条
  • [1] Privacy-Preserving Deep Learning on Big Data in Cloud
    Fan, Yongkai
    Zhang, Wanyu
    Bai, Jianrong
    Lei, Xia
    Li, Kuanching
    CHINA COMMUNICATIONS, 2023, 20 (11) : 176 - 186
  • [2] Privacy-preserving Deep Learning Models for Law Big Data Feature Learning
    Yuan, Xu
    Zhang, Jianing
    Chen, Zhikui
    Gao, Jing
    Li, Peng
    IEEE 17TH INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP / IEEE 17TH INT CONF ON PERVAS INTELLIGENCE AND COMP / IEEE 5TH INT CONF ON CLOUD AND BIG DATA COMP / IEEE 4TH CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2019, : 128 - 134
  • [3] Privacy-preserving Deep-learning Models for Fingerprint Data Using Differential Privacy
    Mohammadi, Maryam
    Sabry, Farida
    Labda, Wadha
    Malluhi, Qutaibah
    PROCEEDINGS OF THE 9TH ACM INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS, IWSPA 2023, 2023, : 45 - 53
  • [4] Anonymous and Privacy-Preserving Federated Learning With Industrial Big Data
    Zhao, Bin
    Fan, Kai
    Yang, Kan
    Wang, Zilong
    Li, Hui
    Yang, Yintang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 6314 - 6323
  • [5] SecDM: privacy-preserving data outsourcing framework with differential privacy
    Dagher, Gaby G.
    Fung, Benjamin C. M.
    Mohammed, Noman
    Clark, Jeremy
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (05) : 1923 - 1960
  • [6] Privacy-Preserving federated learning: An application for big data load forecast in buildings
    Khalil, Maysaa
    Esseghir, Moez
    Boulahia, Leila Merghem
    COMPUTERS & SECURITY, 2023, 131
  • [7] Privacy-Preserving Big Data Security for IoT With Federated Learning and Cryptography
    Awan, Kamran Ahmad
    Din, Ikram Ud
    Almogren, Ahmad
    Rodrigues, Joel J. P. C.
    IEEE ACCESS, 2023, 11 : 120918 - 120934
  • [8] Privacy-Preserving Monotonicity of Differential Privacy Mechanisms
    Liu, Hai
    Wu, Zhenqiang
    Zhou, Yihui
    Peng, Changgen
    Tian, Feng
    Lu, Laifeng
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [9] A Pragmatic Privacy-Preserving Deep Learning Framework Satisfying Differential Privacy
    Dang T.K.
    Tran-Truong P.T.
    SN Computer Science, 5 (1)
  • [10] A Framework for Privacy-Preserving in IoV Using Federated Learning With Differential Privacy
    Adnan, Muhammad
    Syed, Madiha Haider
    Anjum, Adeel
    Rehman, Semeen
    IEEE ACCESS, 2025, 13 : 13507 - 13521