Advances in Machine Learning Approaches to Heart Failure with Preserved Ejection Fraction

被引:18
作者
Ahmad, Faraz S. [1 ,2 ,3 ,5 ]
Luo, Yuan [2 ,3 ,6 ]
Wehbe, Ramsey M. [1 ,3 ,5 ]
Thomas, James D. [1 ,3 ,5 ]
Shah, Sanjiv J. [1 ,3 ,4 ,5 ]
机构
[1] Northwestern Univ, Dept Med, Feinberg Sch Med, Div Cardiol, Chicago, IL 60611 USA
[2] Northwestern Univ, Dept Prevent Med, Feinberg Sch Med, Chicago, IL 60611 USA
[3] Northwestern Med, Ctr Artificial Intelligence, Bluhm Cardiovasc Inst, Chicago, IL USA
[4] Northwestern Univ, Feinberg Sch Med, Ctr Deep Phenotyping & Precis Therapeut, Inst Augmented Intelligence Med, 676 North St Clair St,Suite 730, Chicago, IL 60611 USA
[5] 676 North St Clair St,Suite 600, Chicago, IL 60611 USA
[6] Rubloff Bldg,11th Floor,750 North Lake Shore, Chicago, IL 60611 USA
基金
美国医疗保健研究与质量局; 美国国家卫生研究院;
关键词
Heart failure; Artificial intelligence; Machine learning; Deep learning; Natural language processing; DATASET SHIFT; HEALTH-CARE; FUTURE; STATE; TEXT;
D O I
10.1016/j.hfc.2021.12.002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
center dot Machine learning has the potential to guide precision medicine approaches for heart failure with preserved ejection fraction, such as identification of rare causes, subphenotyping, and increasing the efficiency of clinical trial enrollment. center dot Understanding the strengths, limitations, and pitfalls of machine learning approaches is critical to realizing the potential of machine learning to impact the health of the patient with heart failure with preserved ejection fraction.
引用
收藏
页码:287 / 300
页数:14
相关论文
共 75 条
[1]   Improving risk prediction in heart failure using machine learning [J].
Adler, Eric D. ;
Voors, Adriaan A. ;
Klein, Liviu ;
Macheret, Fima ;
Braun, Oscar O. ;
Urey, Marcus A. ;
Zhu, Wenhong ;
Sama, Iziah ;
Tadel, Matevz ;
Campagnari, Claudio ;
Greenberg, Barry ;
Yagil, Avi .
EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (01) :139-147
[2]   Using "Big Data" to Dissect Clinical Heterogeneity [J].
Altman, Russ B. ;
Ashley, Euan A. .
CIRCULATION, 2015, 131 (03) :232-233
[3]  
[Anonymous], 2019, ABS190405342 ARXIV
[4]  
[Anonymous], 2001, Regularization, Optimization, and Beyond
[5]  
Bae Charles J, 2015, EGEMS (Wash DC), V3, P1125, DOI 10.13063/2327-9214.1125
[6]  
Bishop C.M., 2006, PATTERN RECOGNITION, DOI [DOI 10.18637/JSS.V017.B05, 10.1117/1.2819119]
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]  
Brown TB, 2020, ADV NEUR IN, V33
[9]   Developing Therapies for Heart Failure With Preserved Ejection Fraction Current State and Future Directions [J].
Butler, Javed ;
Fonarow, Gregg C. ;
Zile, Michael R. ;
Lam, Carolyn S. ;
Roessig, Lothar ;
Schelbert, Erik B. ;
Shah, Sanjiv J. ;
Ahmed, Ali ;
Bonow, Robert O. ;
Cleland, John G. F. ;
Cody, Robert J. ;
Chioncel, Ovidiu ;
Collins, Sean P. ;
Dunnmon, Preston ;
Filippatos, Gerasimos ;
Lefkowitz, Martin P. ;
Marti, Catherine N. ;
McMurray, John J. ;
Misselwitz, Frank ;
Nodari, Savina ;
O'Connor, Christopher ;
Pfeffer, Marc A. ;
Pieske, Burkert ;
Pitt, Bertram ;
Rosano, Giuseppe ;
Sabbah, Hani N. ;
Senni, Michele ;
Solomon, Scott D. ;
Stockbridge, Norman ;
Teerlink, John R. ;
Georgiopoulou, Vasiliki V. ;
Gheorghiade, Mihai .
JACC-HEART FAILURE, 2014, 2 (02) :97-112
[10]   Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records [J].
Byrd, Roy J. ;
Steinhubl, Steven R. ;
Sun, Jimeng ;
Ebadollahi, Shahram ;
Stewart, Walter F. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2014, 83 (12) :983-992