Identifying the RNA signatures of coronary artery disease from combined lncRNA and mRNA expression profiles

被引:10
作者
Zhang, Yu-Hang [1 ,2 ,3 ]
Pan, Xiaoyong [4 ]
Zeng, Tao [5 ]
Chen, Lei [6 ]
Huang, Tao [2 ]
Cai, Yu-Dong [1 ]
机构
[1] Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai Inst Nutr & Hlth, Shanghai 200031, Peoples R China
[3] Harvard Med Sch, Brigham & Womens Hosp, Channing Div Network Med, Boston, MA 02115 USA
[4] Shanghai Jiao Tong Univ, Key Lab Syst Control & Informat Proc, Minist Educ China, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
[5] Shanghai Res Ctr Brain Sci & Brain Inspired Intel, Shanghai 201210, Peoples R China
[6] Shanghai Maritime Univ, Coll Informat Engn, Shanghai 201306, Peoples R China
基金
国家重点研发计划; 上海市自然科学基金; 中国国家自然科学基金;
关键词
Coronary artery disease; mRNA; lncRNA; Biomarker; Classification; NEAREST-NEIGHBOR CLASSIFICATION; C-REACTIVE PROTEIN; FEATURE-SELECTION; GENE-EXPRESSION; HEART-FAILURE; IDENTIFICATION; INFLAMMATION; INTERLEUKIN-6; ASSOCIATION; MECHANISMS;
D O I
10.1016/j.ygeno.2020.09.016
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Coronary artery disease (CAD) is the most common cardiovascular disease. CAD research has greatly progressed during the past decade. mRNA is a traditional and popular pipeline to investigate various disease, including CAD. Compared with mRNA, lncRNA has better stability and thus may serve as a better disease indicator in blood. Investigating potential CAD-related lncRNAs and mRNAs will greatly contribute to the diagnosis and treatment of CAD. In this study, a computational analysis was conducted on patients with CAD by using a comprehensive transcription dataset with combined mRNA and lncRNA expression data. Several machine learning algorithms, including feature selection methods and classification algorithms, were applied to screen for the most CAD-related RNA molecules. Decision rules were also reported to provide a quantitative description about the effect of these RNA molecules on CAD progression. These new findings (CAD-related RNA molecules and rules) can help understand mRNA and lncRNA expression levels in CAD
引用
收藏
页码:4945 / 4958
页数:14
相关论文
共 98 条
[31]   New susceptibility locus for coronary artery disease on chromosome 3q22.3 [J].
Erdmann, Jeanette ;
Grosshennig, Anika ;
Braund, Peter S. ;
Koenig, Inke R. ;
Hengstenberg, Christian ;
Hall, Alistair S. ;
Linsel-Nitschke, Patrick ;
Kathiresan, Sekar ;
Wright, Ben ;
Tregouet, David-Alexandre ;
Cambien, Francois ;
Bruse, Petra ;
Aherrahrou, Zouhair ;
Wagner, Arnika K. ;
Stark, Klaus ;
Schwartz, Stephen M. ;
Salomaa, Veikko ;
Elosua, Roberto ;
Melander, Olle ;
Voight, Benjamin F. ;
O'Donnell, Christopher J. ;
Peltonen, Leena ;
Siscovick, David S. ;
Altshuler, David ;
Merlini, Piera Angelica ;
Peyvandi, Flora ;
Bernardinelli, Luisa ;
Ardissino, Diego ;
Schillert, Arne ;
Blankenberg, Stefan ;
Zeller, Tanja ;
Wild, Philipp ;
Schwarz, Daniel F. ;
Tiret, Laurence ;
Perret, Claire ;
Schreiber, Stefan ;
El Mokhtari, Nour Eddine ;
Schaefer, Arne ;
Maerz, Winfried ;
Renner, Wilfried ;
Bugert, Peter ;
Klueter, Harald ;
Schrezenmeir, Juergen ;
Rubin, Diana ;
Ball, Stephen G. ;
Balmforth, Anthony J. ;
Wichmann, H-Erich ;
Meitinger, Thomas ;
Fischer, Marcus ;
Meisinger, Christa .
NATURE GENETICS, 2009, 41 (03) :280-282
[32]   Non-coding RNAs in human disease [J].
Esteller, Manel .
NATURE REVIEWS GENETICS, 2011, 12 (12) :861-874
[33]   Meta- analysis of expression of l(3) mbt tumor- associated germline genes supports the model that a soma- to- germline transition is a hallmark of human cancers [J].
Feichtinger, Julia ;
Larcombe, Lee ;
McFarlane, Ramsay J. .
INTERNATIONAL JOURNAL OF CANCER, 2014, 134 (10) :2359-2365
[34]   MECHANISMS OF DISEASE - THE PATHOGENESIS OF CORONARY-ARTERY DISEASE AND THE ACUTE CORONARY SYNDROMES .1. [J].
FUSTER, V ;
BADIMON, L ;
BADIMON, JJ ;
CHESEBRO, JH .
NEW ENGLAND JOURNAL OF MEDICINE, 1992, 326 (04) :242-250
[35]   Will Global Transcriptome Analysis Allow the Detection of Novel Prognostic Markers in Coronary Artery Disease and Heart Failure? [J].
Gora, Monika ;
Kiliszek, Marek ;
Burzynska, Beata .
CURRENT GENOMICS, 2013, 14 (06) :388-396
[36]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422
[37]   Mechanisms of disease - Inflammation, atherosclerosis, and coronary artery disease [J].
Hansson, GK .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 352 (16) :1685-1695
[38]   Predicting substrates of the human breast cancer resistance protein using a support vector machine method [J].
Hazai, Eszter ;
Hazai, Istvan ;
Ragueneau-Majlessi, Isabelle ;
Chung, Sophie P. ;
Bikadi, Zsolt ;
Mao, Qingcheng .
BMC BIOINFORMATICS, 2013, 14
[39]   Long Non-coding RNAs: At the Heart of Cardiac Dysfunction? [J].
Hobuss, Lisa ;
Baer, Christian ;
Thum, Thomas .
FRONTIERS IN PHYSIOLOGY, 2019, 10
[40]   Support vector machine approach for protein subcellular localization prediction [J].
Hua, SJ ;
Sun, ZR .
BIOINFORMATICS, 2001, 17 (08) :721-728