Quantum diffusion: A simple, exactly solvable model

被引:0
作者
Magnus, Wim [1 ,2 ]
Nelissen, Kwinten [1 ]
机构
[1] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium
[2] IMEC, B-3001 Louvain, Belgium
关键词
Quantum evolution; Irreversibility; Quantum diffusion; Power-law decay; NONEQUILIBRIUM STATISTICAL-MECHANICS; TRANSPORT;
D O I
10.1016/j.physa.2014.09.041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a simple quantum mechanical model describing the time dependent diffusion current between two fermion reservoirs that were initially disconnected and characterized by different densities or chemical potentials. The exact, analytical solution of the model yields the transient behavior of the coupled fermion systems evolving to a final steady state, whereas the long-time behavior is determined by a power law rather than by exponential decay. Similar results are obtained for the entropy production which is proportional to the diffusion current. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 50 条
  • [31] Work and information processing in a solvable model of Maxwell's demon
    Mandal, Dibyendu
    Jarzynski, Christopher
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (29) : 11641 - 11645
  • [32] A QUANTUM DRIFT-DIFFUSION MODEL AND ITS USE INTO A HYBRID STRATEGY FOR STRONGLY CONFINED NANOSTRUCTURES
    Jourdana, Clement
    Pietra, Paola
    KINETIC AND RELATED MODELS, 2019, 12 (01) : 217 - 242
  • [33] A fast solvable operator-splitting scheme for time-dependent advection diffusion equation
    Chen, Chengyu
    Lin, Xue-Lei
    APPLIED NUMERICAL MATHEMATICS, 2024, 204 : 48 - 59
  • [34] Quantum diffusion in bilateral doped chains
    金福报
    张凯旺
    钟建新
    Chinese Physics B, 2011, 20 (07) : 349 - 354
  • [35] Intermittent lower bound on quantum diffusion
    Guarneri, I
    Schulz-Baldes, H
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 49 (04) : 317 - 324
  • [36] Quantum diffusion in the strong tunneling regime
    Paul, Nisarga
    Amir, Ariel
    PHYSICAL REVIEW B, 2019, 100 (02)
  • [37] SUPERSYMMETRIC WARD IDENTITIES IN QUANTUM DIFFUSION
    Disertori, Margherita
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 357 - 361
  • [38] FEYNMAN GRAPHS AND RENORMALIZATION IN QUANTUM DIFFUSION
    Erdos, Laszlo
    Salmhofer, Manfred
    Yau, Horng-Tzer
    QUANTUM FIELD THEORY AND BEYOND: ESSAYS IN HONOR OF WOLFHART ZIMMERMANN, 2008, : 167 - +
  • [39] Intermittent Lower Bound on Quantum Diffusion
    Italo Guarneri
    Hermann Schulz-Baldes
    Letters in Mathematical Physics, 1999, 49 : 317 - 324
  • [40] Quantum diffusion of muon and muonium in solids
    R. Kadono
    Applied Magnetic Resonance, 1997, 13 : 37 - 54