Quantum diffusion: A simple, exactly solvable model

被引:0
作者
Magnus, Wim [1 ,2 ]
Nelissen, Kwinten [1 ]
机构
[1] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium
[2] IMEC, B-3001 Louvain, Belgium
关键词
Quantum evolution; Irreversibility; Quantum diffusion; Power-law decay; NONEQUILIBRIUM STATISTICAL-MECHANICS; TRANSPORT;
D O I
10.1016/j.physa.2014.09.041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a simple quantum mechanical model describing the time dependent diffusion current between two fermion reservoirs that were initially disconnected and characterized by different densities or chemical potentials. The exact, analytical solution of the model yields the transient behavior of the coupled fermion systems evolving to a final steady state, whereas the long-time behavior is determined by a power law rather than by exponential decay. Similar results are obtained for the entropy production which is proportional to the diffusion current. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 50 条
  • [21] Polaronic quantum diffusion in dynamic localization regime
    Yao, Yao
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [22] The quantum drift-diffusion model: Existence and exponential convergence to the equilibrium
    Pinaud, Olivier
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (03): : 811 - 836
  • [23] Solvable models for neutral modes in fractional quantum Hall edges
    Heinrich, Chris
    Levin, Michael
    PHYSICAL REVIEW B, 2017, 95 (20)
  • [24] Quantum jumps are more quantum than quantum diffusion
    Daryanoosh, Shakib
    Wiseman, Howard M.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [25] Quantum diffusion on manifolds
    Field, TR
    JOURNAL OF GEOMETRY AND PHYSICS, 2003, 47 (04) : 484 - 496
  • [26] Self-consistent quantum drift-diffusion model for multiple quantum well IMPATT diodes
    Ghosh, Monisha
    Ghosh, Somrita
    Acharyya, Aritra
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2016, 15 (04) : 1370 - 1387
  • [27] Simple Chemical Model for Facilitated Transport with an Application to Wyman. Murray Facilitated Diffusion
    Cole, Christine Lind
    Qian Hong
    ACTA PHYSICO-CHIMICA SINICA, 2010, 26 (11) : 2857 - 2864
  • [28] Hydrodynamic dispersion in heterogeneous anisotropic porous media: A simple model for anomalous diffusion emergence
    Hernandez, D.
    Ramirez-Alatriste, F.
    Romo-Cruz, J. C. R.
    Olivares-Quiroz, L.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 508 : 424 - 433
  • [29] Uniformly Stable Explicitly Solvable Finite Difference Method for Fractional Diffusion Equations
    Rui, Hongxing
    Huang, Jian
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (01) : 29 - 47
  • [30] A Finite-Volume Scheme for the Multidimensional Quantum Drift-Diffusion Model for Semiconductors
    Chainais-Hillairet, Claire
    Gisclon, Marguerite
    Juengel, Ansgar
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (06) : 1483 - 1510