A Generative Approach to Zero-Shot and Few-Shot Action Recognition

被引:90
|
作者
Mishra, Ashish [1 ]
Verma, Vinay Kumar [2 ]
Reddy, M. Shiva Krishna [1 ]
Arulkumar, S. [1 ]
Rai, Piyush [2 ]
Mittal, Anurag [1 ]
机构
[1] Indian Inst Technol Madras, Madras, Tamil Nadu, India
[2] Indian Inst Technol Kanpur, Kanpur, Uttar Pradesh, India
来源
2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018) | 2018年
关键词
HISTOGRAMS;
D O I
10.1109/WACV.2018.00047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a generative framework for zero-shot action recognition where some of the possible action classes do not occur in the training data. Our approach is based on modeling each action class using a probability distribution whose parameters are functions of the attribute vector representing that action class. In particular, we assume that the distribution parameters for any action class in the visual space can be expressed as a linear combination of a set of basis vectors where the combination weights are given by the attributes of the action class. These basis vectors can be learned solely using labeled data from the known (i.e., previously seen) action classes, and can then be used to predict the parameters of the probability distributions of unseen action classes. We consider two settings: (1) Inductive setting, where we use only the labeled examples of the seen action classes to predict the unseen action class parameters; and (2) Transductive setting which further lever-ages unlabeled data from the unseen action classes. Our framework also naturally extends to few-shot action recognition where a few labelled examples from unseen classes are available. Our experiments on benchmark datasets (UCF101, HMDB51 and Olympic) show significant performance improvements as compared to various baselines, in both standard zero-shot (disjoint seen and unseen classes) and generalized zero-shot learning settings.
引用
收藏
页码:372 / 380
页数:9
相关论文
共 50 条
  • [31] On the Importance of Spatial Relations for Few-shot Action Recognition
    Zhang, Yilun
    Fu, Yuqian
    Ma, Xingjun
    Qi, Lizhe
    Chen, Jingjing
    Wu, Zuxuan
    Jiang, Yu-Gang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2243 - 2251
  • [32] Anomalous Action Recognition Research for Few-shot Learning
    Qi, Yufei
    Liu, Ting
    Fu, Yuzhuo
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1306 - 1310
  • [33] Compound Prototype Matching for Few-Shot Action Recognition
    Huang, Yifei
    Yang, Lijin
    Sato, Yoichi
    COMPUTER VISION - ECCV 2022, PT IV, 2022, 13664 : 351 - 368
  • [34] Elastic temporal alignment for few-shot action recognition
    Pan, Fei
    Xu, Chunlei
    Zhang, Hongjie
    Guo, Jie
    Guo, Yanwen
    IET COMPUTER VISION, 2023, 17 (01) : 39 - 50
  • [35] Matching Compound Prototypes for Few-Shot Action Recognition
    Huang, Yifei
    Yang, Lijin
    Chen, Guo
    Zhang, Hongjie
    Lu, Feng
    Sato, Yoichi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (09) : 3977 - 4002
  • [36] Task Adaptive Modeling for Few-shot Action Recognition
    Wang, Jiayi
    Jin, Yi
    Feng, Songhe
    Li, Yidong
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [37] Generative Zero-shot Network Quantization
    He, Xiangyu
    Lu, Jiahao
    Xu, Weixiang
    Hu, Qinghao
    Wang, Peisong
    Cheng, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 2994 - 3005
  • [38] Hierarchical compositional representations for few-shot action recognition
    Li, Changzhen
    Zhang, Jie
    Wu, Shuzhe
    Jin, Xin
    Shan, Shiguang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 240
  • [39] Advances in Few-Shot Action Recognition: A Comprehensive Review
    Ruan, Zanxi
    Wei, Yingmei
    Yuan, Yifei
    Li, Yu
    Guo, Yanming
    Xie, Yuxiang
    2024 7TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA, ICAIBD 2024, 2024, : 390 - 398
  • [40] A ZERO-SHOT ARCHITECTURE FOR ACTION RECOGNITION IN STILL IMAGES
    Safaei, Marjaneh
    Foroosh, Hassan
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 460 - 464