TGFB1-induced autophagy affects the pattern of pancreatic cancer progression in distinct ways depending on SMAD4 status

被引:93
作者
Liang, Chen [1 ,2 ,3 ,4 ]
Xu, Jin [1 ,2 ,3 ,4 ]
Meng, Qingcai [1 ,2 ,3 ,4 ]
Zhang, Bo [1 ,2 ,3 ,4 ]
Liu, Jiang [1 ,2 ,3 ,4 ]
Hua, Jie [1 ,2 ,3 ,4 ]
Zhang, Yiyin [1 ,2 ,3 ,4 ]
Shi, Si [1 ,2 ,3 ,4 ]
Yu, Xianjun [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, Shanghai Canc Ctr, Dept Pancreat Surg, Shanghai, Peoples R China
[2] Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R China
[3] Shanghai Pancreat Canc Inst, Shanghai, Peoples R China
[4] Fudan Univ, Pancreat Canc Inst, 270 DongAn Rd, Shanghai 200032, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Autophagic flux; LC3B; metastasis; pancreatic ductal adenocarcinoma; proliferation; GROWTH-FACTOR-BETA; TGF-BETA; PROGNOSTIC-SIGNIFICANCE; STATUS DETERMINES; GENETIC STATUS; EXPRESSION; FAILURE; ADENOCARCINOMA; PROLIFERATION; LOCALIZATION;
D O I
10.1080/15548627.2019.1628540
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies. Given that macroautophagy/autophagy activation is prevalent in PDAC, the dual roles of autophagy could be involved in PDAC heterogeneity. In this work, we demonstrated that TGFB1 induced autophagic flux through SMAD4-dependent or SMAD4-independent pathways based on a distinct genetic context. In SMAD4-positive PDAC cells, TGFB1-induced autophagy promoted proliferation and inhibited migration by decreasing the nuclear translocation of SMAD4. Conversely, TGFB1-induced autophagy inhibited proliferation and promoted migration in SMAD4-negative cells through the regulation of MAPK/ERK activation. TGFB1 expression also positively correlated with LC3B expression in PDAC specimens. A high level of LC3B was associated with unfavorable overall survival (OS) and disease-free survival (DFS) in SMAD4-negative PDAC patients, although LC3B could not predict OS and DFS for the 110 PDAC patients. Thus, TGFB1-induced autophagy contributed to the different patterns of PDAC progression. This knowledge can aid in improving our understanding of the molecular classification of PDAC and might guide the development of therapeutic strategies for PDAC, especially for SMAD4-negative PDAC.
引用
收藏
页码:486 / 500
页数:15
相关论文
共 45 条
  • [1] SQSTM1/p62 regulates the expression of junctional proteins through epithelial-mesenchymal transition factors
    Bertrand, Matthieu
    Petit, Valerie
    Jain, Ashish
    Amsellem, Raymonde
    Johansen, Terje
    Larue, Lionel
    Codogno, Patrice
    Beau, Isabelle
    [J]. CELL CYCLE, 2015, 14 (03) : 364 - 374
  • [2] National failure to operate on early stage pancreatic cancer
    Bilimoria, Karl Y.
    Bentrem, David J.
    Ko, Clifford Y.
    Stewart, Andrew K.
    Winchester, David P.
    Talamonti, Mark S.
    [J]. ANNALS OF SURGERY, 2007, 246 (02) : 173 - 180
  • [3] Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-β in pancreatic tumor cells
    Chen, WB
    Lenschow, W
    Tiede, K
    Fischer, JW
    Kalthoff, H
    Ungefroren, H
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (39) : 36118 - 36128
  • [4] Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies
    Chou, Ting-Chao
    [J]. PHARMACOLOGICAL REVIEWS, 2006, 58 (03) : 621 - 681
  • [5] Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method
    Chou, Ting-Chao
    [J]. CANCER RESEARCH, 2010, 70 (02) : 440 - 446
  • [6] Phase II Trial of Cetuximab, Gemcitabine, and Oxaliplatin Followed by Chemoradiation With Cetuximab for Locally Advanced (T4) Pancreatic Adenocarcinoma: Correlation of Smad4(Dpc4) Immunostaining With Pattern of Disease Progression
    Crane, Christopher H.
    Varadhachary, Gauri R.
    Yordy, John S.
    Staerkel, Gregg A.
    Javle, Milind M.
    Safran, Howard
    Haque, Waqar
    Hobbs, Bridgett D.
    Krishnan, Sunil
    Fleming, Jason B.
    Das, Prajnan
    Lee, Jeffrey E.
    Abbruzzese, James L.
    Wolff, Robert A.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (22) : 3037 - 3043
  • [7] TGF-β Tumor Suppression through a Lethal EMT
    David, Charles J.
    Huang, Yun-Han
    Chen, Mo
    Su, Jie
    Zou, Yilong
    Bardeesy, Nabeel
    Iacobuzio-Donahue, Christine A.
    Massague, Joan
    [J]. CELL, 2016, 164 (05) : 1015 - 1030
  • [8] Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome
    Fujii, Satoshi
    Mitsunaga, Shuichi
    Yamazaki, Manabu
    Hasebe, Takahiro
    Ishii, Genichiro
    Kojima, Motohiro
    Kinoshita, Taira
    Ueno, Takashi
    Esumi, Hiroyasu
    Ochiai, Atsushi
    [J]. CANCER SCIENCE, 2008, 99 (09) : 1813 - 1819
  • [9] Autophagy in malignant transformation and cancer progression
    Galluzzi, Lorenzo
    Pietrocola, Federico
    Bravo-San Pedro, Jose Manuel
    Amaravadi, Ravi K.
    Baehrecke, Eric H.
    Cecconi, Francesco
    Codogno, Patrice
    Debnath, Jayanta
    Gewirtz, David A.
    Karantza, Vassiliki
    Kimmelman, Alec
    Kumar, Sharad
    Levine, Beth
    Maiuri, Maria Chiara
    Martin, Seamus J.
    Penninger, Josef
    Piacentini, Mauro
    Rubinsztein, David C.
    Simon, Hans-Uwe
    Simonsen, Anne
    Thorburn, Andrew M.
    Velasco, Guillermo
    Ryan, Kevin M.
    Kroemer, Guido
    [J]. EMBO JOURNAL, 2015, 34 (07) : 856 - 880
  • [10] Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
    Guo, Jessie Yanxiang
    Chen, Hsin-Yi
    Mathew, Robin
    Fan, Jing
    Strohecker, Anne M.
    Karsli-Uzunbas, Gizem
    Kamphorst, Jurre J.
    Chen, Guanghua
    Lemons, Johanna M. S.
    Karantza, Vassiliki
    Coller, Hilary A.
    DiPaola, Robert S.
    Gelinas, Celine
    Rabinowitz, Joshua D.
    White, Eileen
    [J]. GENES & DEVELOPMENT, 2011, 25 (05) : 460 - 470