A fractional order approach to modeling and simulations of the novel COVID-19

被引:67
作者
Owusu-Mensah, Isaac [1 ,4 ]
Akinyemi, Lanre [2 ]
Oduro, Bismark [3 ]
Iyiola, Olaniyi S. [3 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
[2] Prairie View A&M Univ, Dept Math, Prairie View, TX USA
[3] Calif Univ Penn, Dept Math & Phys Sci, California, PA 15419 USA
[4] Univ Educ, Dept Sci Educ, Winneba, Mampong Ashanti, Ghana
关键词
COVID-19; pandemic; Transmission rate; Fractional calculus; Modeling; Simulations; DIFFERENTIAL-EQUATIONS; APPROXIMATE SOLUTION; STABILITY; ALGORITHM; SYSTEMS;
D O I
10.1186/s13662-020-03141-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The novel coronavirus (SARS-CoV-2), or COVID-19, has emerged and spread at fast speed globally; the disease has become an unprecedented threat to public health worldwide. It is one of the greatest public health challenges in modern times, with no proven cure or vaccine. In this paper, our focus is on a fractional order approach to modeling and simulations of the novel COVID-19. We introduce a fractional type susceptible-exposed-infected-recovered (SEIR) model to gain insight into the ongoing pandemic. Our proposed model incorporates transmission rate, testing rates, and transition rate (from asymptomatic to symptomatic population groups) for a holistic study of the coronavirus disease. The impacts of these parameters on the dynamics of the solution profiles for the disease are simulated and discussed in detail. Furthermore, across all the different parameters, the effects of the fractional order derivative are also simulated and discussed in detail. Various simulations carried out enable us gain deep insights into the dynamics of the spread of COVID-19. The simulation results confirm that fractional calculus is an appropriate tool in modeling the spread of a complex infectious disease such as the novel COVID-19. In the absence of vaccine and treatment, our analysis strongly supports the significance reduction in the transmission rate as a valuable strategy to curb the spread of the virus. Our results suggest that tracing and moving testing up has an important benefit. It reduces the number of infected individuals in the general public and thereby reduces the spread of the pandemic. Once the infected individuals are identified and isolated, the interaction between susceptible and infected individuals diminishes and transmission reduces. Furthermore, aggressive testing is also highly recommended.
引用
收藏
页数:21
相关论文
共 50 条
[21]   A fractional-order model for the novel coronavirus (COVID-19) outbreak [J].
Karthikeyan Rajagopal ;
Navid Hasanzadeh ;
Fatemeh Parastesh ;
Ibrahim Ismael Hamarash ;
Sajad Jafari ;
Iqtadar Hussain .
Nonlinear Dynamics, 2020, 101 :711-718
[22]   A Fuzzy Fractional Order Approach to SIDARTHE Epidemic Model for COVID-19 [J].
Chellamani, P. ;
Julietraja, K. ;
Alsinai, Ammar ;
Ahmed, Hanan .
COMPLEXITY, 2022, 2022
[23]   Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach [J].
Ullah, Mohammad Sharif ;
Higazy, M. ;
Kabir, K. M. Ariful .
CHAOS SOLITONS & FRACTALS, 2022, 155
[24]   Fractional-Order Modeling of COVID-19 Transmission Dynamics: A Study on Vaccine Immunization Failure [J].
Qiao, Yan ;
Ding, Yuhao ;
Pang, Denghao ;
Wang, Bei ;
Lu, Tao .
MATHEMATICS, 2024, 12 (21)
[25]   Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak [J].
Veisi, Amir ;
Delavari, Hadi .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) :3479-3496
[26]   On the Modeling of COVID-19 Spread via Fractional Derivative: A Stochastic Approach [J].
Bonyah E. ;
Juga M.L. ;
Matsebula L.M. ;
Chukwu C.W. .
Mathematical Models and Computer Simulations, 2023, 15 (2) :338-356
[27]   ON THE FRACTIONAL-ORDER MODELING OF COVID-19 DYNAMICS IN A POPULATION WITH LIMITED RESOURCES [J].
Akanni, J. O. ;
Fatmawati ;
Chukwu, C. W. .
COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
[28]   A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel [J].
Boudaoui, Ahmed ;
Moussa, Yacine El Hadj ;
Hammouch, Zakia ;
Ullah, Saif .
CHAOS SOLITONS & FRACTALS, 2021, 146
[29]   Mathematical modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator [J].
Redhwan, Saleh S. ;
Abdo, Mohammed S. ;
Shah, Kamal ;
Abdeljawad, Thabet ;
Dawood, S. ;
Abdo, Hakim A. ;
Shaikh, Sadikali L. .
RESULTS IN PHYSICS, 2020, 19
[30]   COVID-19 Modeling: A Review [J].
Cao, Longbing ;
Liu, Qing .
ACM COMPUTING SURVEYS, 2025, 57 (01)