Chiral susceptibility and the scalar Ward identity

被引:62
作者
Chang, Lei [2 ]
Liu, Yu-xin [3 ,4 ,5 ]
Roberts, Craig D. [1 ,6 ]
Shi, Yuan-mei [7 ]
Sun, Wei-min [7 ,8 ]
Zong, Hong-shi [7 ,8 ]
机构
[1] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA
[2] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[3] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[4] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[5] Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China
[6] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia
[7] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[8] Joint Ctr Particle Nucl Phys & Cosmol, Nanjing 210093, Peoples R China
来源
PHYSICAL REVIEW C | 2009年 / 79卷 / 03期
关键词
SCHWINGER-FUNCTIONS; DYSON; QCD; CONFINEMENT; TRANSITION; SPECTRUM; THEOREM; VERTEX; TENSOR; MODEL;
D O I
10.1103/PhysRevC.79.035209
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansatze. For the two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking.
引用
收藏
页数:9
相关论文
共 58 条
[1]   Analytic properties of the Landau gauge gluon and quark propagators [J].
Alkofer, R ;
Detmold, W ;
Fischer, CS ;
Maris, P .
PHYSICAL REVIEW D, 2004, 70 (01) :014014-1
[2]   The order of the quantum chromodynamics transition predicted by the standard model of particle physics [J].
Aoki, Y. ;
Endrodi, G. ;
Fodor, Z. ;
Katz, S. D. ;
Szabo, K. K. .
NATURE, 2006, 443 (7112) :675-678
[3]   ANALYTIC PROPERTIES OF THE VERTEX FUNCTION IN GAUGE-THEORIES .1. [J].
BALL, JS ;
CHIU, TW .
PHYSICAL REVIEW D, 1980, 22 (10) :2542-2549
[4]   Goldstone theorem and diquark confinement beyond rainbow-ladder approximation [J].
Bender, A ;
Roberts, CD ;
vonSmekal, L .
PHYSICS LETTERS B, 1996, 380 (1-2) :7-12
[5]   Mind the gap [J].
Bhagwat, M. S. ;
Krassnigg, A. ;
Maris, P. ;
Roberts, C. D. .
EUROPEAN PHYSICAL JOURNAL A, 2007, 31 (04) :630-637
[6]   Schwinger functions and light-quark bound states [J].
Bhagwat, M. S. ;
Hoell, A. ;
Krassnigg, A. ;
Roberts, C. D. ;
Wright, S. V. .
FEW-BODY SYSTEMS, 2007, 40 (3-4) :209-235
[7]  
Bhagwat MS, 2006, AIP CONF PROC, V842, P225
[8]  
Bhagwat M. S., ARXIV07102059NUCLTH
[9]   Flavor symmetry breaking and meson masses [J].
Bhagwat, Mandar S. ;
Chang, Lei ;
Liu, Yu-Xin ;
Roberts, Craig D. ;
Tandy, Peter C. .
PHYSICAL REVIEW C, 2007, 76 (04)
[10]   Quark-gluon vertex model and lattice-QCD data [J].
Bhagwat, MS ;
Tandy, PC .
PHYSICAL REVIEW D, 2004, 70 (09)