共 12 条
On the Betti polynomials of certain graded ideals
被引:0
作者:
Failla, Gioia
[1
]
Tang, Zhongming
[2
]
机构:
[1] Univ Reggio Calabria, DIIES, Via Graziella, Reggio Di Calabria, Italy
[2] Soochow Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Betti polynomial;
Borel principal ideal;
degree;
13A30;
POWERS;
D O I:
10.1080/00927872.2017.1404077
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let S = K[ x1,..., xn] be apolynomialringovera eld K and I be anonzero gradedidealof S. Then, for t >> 0, theBettinumber ss q( S/ It) is apolynomial in t, whichisdenotedby BI q( t). Itisprovedthat BI q( t) is vanishedorof degree l ( I) - 1 provided I is amonomialidealgeneratedinasingledegree or grade( mR( I)) = codim( mR( I)) where m = ( x1,..., xn) and R( I) is theRees ringof I. Onelowerboundfortheleadingcoe cientofBI q( t) is given. When I is aBorelprincipalmonomialideal, BI q( t) is calculatedexplicitly.
引用
收藏
页码:3135 / 3146
页数:12
相关论文
共 12 条