On the Betti polynomials of certain graded ideals

被引:0
|
作者
Failla, Gioia [1 ]
Tang, Zhongming [2 ]
机构
[1] Univ Reggio Calabria, DIIES, Via Graziella, Reggio Di Calabria, Italy
[2] Soochow Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Betti polynomial; Borel principal ideal; degree; 13A30; POWERS;
D O I
10.1080/00927872.2017.1404077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S = K[ x1,..., xn] be apolynomialringovera eld K and I be anonzero gradedidealof S. Then, for t >> 0, theBettinumber ss q( S/ It) is apolynomial in t, whichisdenotedby BI q( t). Itisprovedthat BI q( t) is vanishedorof degree l ( I) - 1 provided I is amonomialidealgeneratedinasingledegree or grade( mR( I)) = codim( mR( I)) where m = ( x1,..., xn) and R( I) is theRees ringof I. Onelowerboundfortheleadingcoe cientofBI q( t) is given. When I is aBorelprincipalmonomialideal, BI q( t) is calculatedexplicitly.
引用
收藏
页码:3135 / 3146
页数:12
相关论文
共 50 条