Nonlinear singular Sturm-Liouville problems

被引:11
作者
Duhoux, M [1 ]
机构
[1] Inst Math Pure & Appl, B-1348 Louvain, Belgium
关键词
Green function; lower and upper solutions; nonlinear differential equation of second order; singular boundary value problem; Sturm-Liouville operator; topological degree;
D O I
10.1016/S0362-546X(98)00140-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The compact interval [a,b] (a<b), function r∈C(]a,b[) such that r(t)>0 for all t∈]a,b[ and the three corresponding cases: 1/r∈L1(a,b); 1/r∈L1[a) and 1/r is not a member of the set L1(b]; and 1/r is not a member of the set L1[a) and 1/r is not a member of the set L1(b], are analyzed. Theorems are proved which gives solution to the corresponding cases.
引用
收藏
页码:897 / 918
页数:22
相关论文
共 5 条
[1]  
DECOSTER C, 1995, APPL ANAL, V59
[2]   Maximum and anti-maximum principles for singular Sturm-Liouville problems [J].
Duhoux, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :525-547
[3]   EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR SINGULAR BOUNDARY-VALUE-PROBLEMS [J].
DUNNINGER, DR ;
KURTZ, JC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 115 (02) :396-405
[4]   REGULARIZING TRANSFORMATIONS FOR CERTAIN SINGULAR STURM-LIOUVILLE BOUNDARY-VALUE-PROBLEMS [J].
KAPER, HG ;
KWONG, MK ;
ZETTL, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (05) :957-963
[5]  
Wang J. S. W., 1975, SIAM REV, V17, P339